浏览全部资源
扫码关注微信
北京交通大学 理学院,北京 100044
Published:01 May 2021,
Received:07 January 2021,
Revised:24 January 2021,
扫 描 看 全 文
Jing ZHANG, Pei-wen LYU, Zhong-yuan GUAN, et al. Controllable Synthesis of Ag-In-Zn-S Quaternary Nanocrystals and Their Applications in Electroluminescent Light-emitting Diodes. [J]. Chinese Journal of Luminescence 42(5):620-628(2021)
Jing ZHANG, Pei-wen LYU, Zhong-yuan GUAN, et al. Controllable Synthesis of Ag-In-Zn-S Quaternary Nanocrystals and Their Applications in Electroluminescent Light-emitting Diodes. [J]. Chinese Journal of Luminescence 42(5):620-628(2021) DOI: 10.37188/CJL.20210016.
Ag-In-Zn-S四元半导体纳米晶(以下简称AIZS NCs)不仅具有传统半导体纳米晶带隙可调、发光效率高等优异的发光特性,同时凭借其低毒和合成工艺简单等优点,在发光二极管、生物医学和光电转换等领域得到了广泛应用,成为传统镉基半导体纳米材料的有力竞争者之一。本文通过一步反应法制备出发光性能良好的AIZS NCs,并通过组分调控扩大其发光范围,使其发光颜色从绿光调至红光。在此基础上,采用注射法研究了AIZS NCs的形成过程,证明AIZS纳米晶的形成是阳离子交换反应发生的结果。为了进一步提高其发光性能,采用种子生长法继续在AIZS纳米晶中引入Zn源形成合金型AIZS-ZnS NCs,使其光致发光量子产率达到47%。最后,采用全溶液处理方法以AIZS-ZnS NCs作为发光层构筑了绿、黄和红三色电致发光二极管,其中黄光电致发光二极管的电流效率达到了1.07 cd·A
-1
。
Ag-In-Zn-S quaternary semiconductor nanocrystals(AIZS NCs) not only have the excellent luminescent proeprties including the tunable optical band gap and high photoluminescence quantum yield and so on
but also possess low toxicity and simple synthesis technique. These NCs were widely used in the fields of light-emitting diodes
biomedicine
photoelectric conversion devices and so on
which was regarded as one of the substitutes for cadmium-based nanomaterials. In this paper
highly luminescent Ag-In-Zn-S NCs were synthesized by one-step reaction method
and the emission region was tuned effectively by varying the element ratios
which led to the emission color from green to red. On the basis of the reaction
the formation mechanism of AIZS NCs was studied through a hot-injection method
indicating that the partial cation exchange dominated the formation of AIZS NCs. In order to further optimize the luminescence performance
the alloyed AIZS-ZnS NCs were obtained by further incorporation of Zn source into AIZS NCs through a seeded-mediated growth method
which exhibited a high photoluminescent quantum yield of 47%. Finally
red
yellow and green electroluminescent light-emitting diodes were fabricated by using AIZS-ZnS NCs as the emissive layer
and the yellow device exhibited a current efficiency of 1.07 cd·A
-1
.
Ag-In-Zn-S半导体纳米晶控制制备组分调控电致发光二极管
Ag-In-Zn-Ssemiconductor nanocrystalscontrollable synthesiscomponent tunableelectroluminescent light-emitting didoes
SUN L F, CHOI J J, STACHNIK D, et al.. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J].Nat. Nanotechnol., 2012, 7(6):369-373.
殷月红, 邓振波, 伦建超, 等. ZnSe(ZnS)纳米晶与MEH-PPV的共掺有机电致发光器件[J].发光学报, 2012, 33(2):171-175.
YIN Y H, DENG Z B, LUN J C, et al.. Organic electroluminescence of ZnSe/ZnS nanocrystal hybrid with MEH-PPV[J].Chin. J. Lumin., 2012, 33(2):171-175. (in Chinese)
唐爱伟, 滕枫, 高银浩, 等. 单核/双壳结构CdSe/CdS/ZnS纳米晶的合成与发光性质[J].发光学报, 2006, 27(2):234-238.
TANG A W, TENG F, GAO Y H, et al.. Synthesis and luminescent properties of core/shell/shell structural CdSe/CdS/ZnS nanocrystals[J].Chin. J. Lumin., 2006, 27(2):234-238. (in Chinese)
LEE J Y, NAM D H, OH M H, et al.. Serum-stable quantum dot-protein hybrid nanocapsules for optical bio-imaging[J].Nanotechnology, 2014, 25(17):175702-1-12.
LIAO W C, RIUTIN M, PARAK W J, et al.. Programmed pH-responsive microcapsules for the controlled release of CdSe/ZnS quantum dots[J].ACS Nano, 2016, 10(9):8683-8689.
LI L, DAOU T J, TEXIER I, et al.. Highly luminescent CuInS2/ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging[J].Chem. Mater., 2009, 21(12):2422-2429.
BAI Z L, JI W Y, HAN D B, et al.. Hydroxyl-terminated CuInS2 based quantum dots:toward efficient and bright light emitting diodes[J].Chem. Mater., 2016, 28(4):1085-1091.
HU W H, LUDWIG J, PATTENGALE B, et al.. Unravelling the correlation of electronic structure and carrier dynamics in CuInS2 nanoparticles[J].J. Phys. Chem. C, 2018, 122(1):974-980.
SOUSA V, GONÇALVES B F, FRANCO M, et al.. Superstructural ordering in hexagonal CuInSe2 nanoparticles[J].Chem. Mater., 2019, 31(1):260-267.
LIU Z Y, TANG A W, WANG M, et al.. Heating-up synthesis of cadimum-free and color-tunable quaternary and five-component Cu-In-Zn-S-based semiconductor nanocrystals[J].J. Mater. Chem. C, 2015, 3(39):10114-10120.
LIU Z Y, ZHAO K, TANG A W, et al.. Solution-processed high-efficiency cadmium-free Cu-Zn-In-S-based quantum-dot light-emitting diodes with low turn-on voltage[J].Org. Electron., 2016, 36:97-102.
LIU Z Y, TANG A W, XIE Y H, et al.. Solution-processed planar white light-emitting diodes based on cadmium-free Cu-In-Zn-S/ZnS quantum dots and polymer[J].Org. Electron., 2017, 45:20-25.
ZHU B Y, JI W Y, DUAN Z Q, et al.. Low turn-on voltage and highly bright Ag-In-Zn-S quantum dot light-emitting diodes[J].J. Mater. Chem. C, 2018, 6(17):4683-4690.
XIANG W D, XIE C P, WANG J, et al.. Studies on highly luminescent AgInS2 and Ag-Zn-In-S quantum dots[J].J. Alloys Compd., 2014, 588:114-121.
BHAUMIK S, GUCHHAIT A, PAL A J. Light-emitting diodes based on nontoxic zinc-alloyed silver-indium-sulfide(AIZS) nanocrystals[J].Physica E Low-Dimens. Syst. Nanostructures, 2014, 58:124-129.
BHAUMIK S, PAL A J. Light-emitting diodes based on solution-processed nontoxic quantum dots:oxides as carrier-transport layers and introducing molybdenum oxide nanoparticles as a hole-inject layer[J].ACS Appl. Mater. Interfaces, 2014, 6(14):11348-11356.
CHOI D B, KIM S, YOON H C, et al.. Color-tunable Ag-In-Zn-S quantum-dot light-emitting devices realizing green, yellow and amber emissions[J].J. Mater. Chem. C, 2017, 5(4):953-959.
JI C Y, LU M, WU H, et al.. 1,2-Ethanedithiol treatment for AgIn5S8/ZnS quantum dot light-emitting diodes with high brightness[J].ACS Appl. Mater. Interfaces, 2017, 9(9):8187-8193.
YU R M, YIN F R, PU C Y, et al.. Highly efficient Ag-In-Zn-S quantum dot light-emitting diodes with a hole-spacing interlayer[J].Org. Electron., 2020, 84:105809.
KOBOSKO S M, JARA D H, KAMAT P V. AgInS2-ZnS quantum dots:excited state interactions with TiO2 and photovoltaic performance[J].ACS Appl. Mater. Interfaces, 2017, 9(39):33379-33388.
CAI C Q, ZHAI L L, MA Y H, et al.. Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells[J].J. Power Sources, 2017, 341:11-18.
WANG L, KANG X J, PAN D C. Gram-scale synthesis of hydrophilic PEI-coated AgInS2 quantum dots and its application in hydrogen peroxide/glucose detection and cell imaging[J].Inorg. Chem., 2017, 56(11):6122-6130.
SONG J L Q, MA C, ZHANG W Z, et al.. Bandgap and structure engineering via cation exchange:from binary Ag2S to ternary AgInS2, quaternary AgZnInS alloy and AgZnInS/ZnS core/shell fluorescent nanocrystals for bioimaging[J].ACS Appl. Mater. Interfaces, 2016, 8(37):24826-24836.
CHEN S Q, DEMILLO V, LU M G, et al.. Preparation of photoluminescence tunable Cu-doped AgInS2 and AgInS2/ZnS nanocrystals and their application as cellular imaging probes[J].RSC Adv., 2016, 6(56):51161-51170.
SONG J L Q, JIANG T T, GUO T Y, et al.. Facile synthesis of water-soluble Zn-doped AgIn5S8/ZnS core/shell fluorescent nanocrystals and their biological application[J].Inorg. Chem., 2015, 54(4):1627-1633.
DENG D W, QU L Z, CHENG Z Q, et al.. Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots and their unique precursor S/In ratio-dependent spectral shifts[J].J. Lumin., 2014, 146:364-370.
KAMEYAMA T, TAKAHASHI T, MACHIDA T, et al.. Controlling the electronic energy structure of ZnS-AgInS2 solid solution nanocrystals for photoluminescence and photocatalytic hydrogen evolution[J].J. Phys. Chem. C, 2015, 119(44):24740-24749.
YUAN Y J, CHEN D Q, XIONG M, et al.. Bandgap engineering of (AgIn)xZn2(1-x)S2 quantum dot photosensitizers for photocatalytic H2 generation[J].Appl. Catal. B Environ., 2017, 204:58-66.
ZENG B, CHEN F, LIU Z Y, et al.. Seeded-mediated growth of ternary Ag-In-S and quaternary Ag-In-Zn-S nanocrystals from binary Ag2S seeds and the composition-tunable optical properties[J].J. Mater. Chem. C, 2019, 7(5):1307-1315.
CHEVALLIER T, LE BLEVENNEC G, CHANDEZON F. Photoluminescence properties of AgInS2-ZnS nanocrystals:the critical role of the surface[J].Nanoscale, 2016, 8(14):7612-7620.
STROYUK O, RAEVSKAYA A, SPRANGER F, et al.. Origin and dynamics of highly-efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag-In-S quantum dots[J].J. Phys. Chem. C, 2018, 122(25):13648-13658.
ALDAKOV D, LEFRANCOIS A, REISS P. Ternary and quaternary metal chalcogenide nanocrystals:synthesis, properties and applications[J].J. Mater. Chem. C, 2013, 1(24):3756-3776.
CHEVALLIER T, BENAYAD A, BLEVENNEC G L, et al.. Method to determine radiative and non-radiative defects applied to AgInS2-ZnS luminescent nanocrystals[J].Phys. Chem. Chem. Phys., 2017, 19(3):2368-2372.
KANG X J, YANG Y C, WANG L, et al.. Warm white light emitting diodes with gelatin-coated AgInS2/ZnS core/shell quantum dots[J].ACS Appl. Mater. Interfaces, 2015, 7(50):27713-27719.
HONG S P, PARK H K, OH J H, et al.. Comparisons of the structural and optical properties of o-AgInS2, t-AgInS2, and c-AgIn5S8 nanocrystals and their solid-solution nanocrystals with ZnS[J].J. Mater. Chem., 2012, 22(36):18939-18949.
WANG X, XIE C P, ZHONG J S, et al.. Synthesis and temporal evolution of Zn-doped AgInS2 quantum dots[J].J. Alloys Compd., 2015, 648:127-133.
YU K, YANG Y, WANG J Z, et al.. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS Nanocrystals[J].Nanotechnology, 2018, 29(25):255703.
WANG C H, CHENG K W, TSENG C J. Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition[J].Sol. Energy Mater. Sol. Cells, 2011, 95(2):453-461.
CICHY B, RICH R, OLEJNICZAK A, et al.. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy[J].Nanoscale, 2016, 8(7):4151-4159.
KOMARALA V K, XIE C, WANG Y Q, et al.. Time-resolved photoluminescence properties of CuInS2/ZnS nanocrystals:influence of intrinsic defects and external impurities[J].J. Appl. Phys., 2012, 111(12):124314-1-4.
RAEVSKAYA A, LESNYAK V, HAUBOLD D, et al.. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots[J].J. Mater. Chem. C, 2017, 121(16):9032-9042.
KO M, YOON H C, YOO H, et al.. Highly efficient green Zn-Ag-In-S/Zn-In-S/ZnS QDs by a strong exothermic reaction for down-converted green and tripackage white LEDs[J].Adv. Funct. Mater., 2017, 27(4):1602638-1-10.
CICHY B, WAWRZYNCZYK D, SAMOC M et al.. Electronic properties and third-order optical nonlinearities in tetragonal chalcopyrite AgInS2, AgInS2/ZnS and cubic spinel AgIn5S8, AgIn5S8/ZnS quantum dots[J].J. Mater. Chem. C, 2017, 5(1):149-158.
0
Views
166
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution