浏览全部资源
扫码关注微信
1.中国科学院上海硅酸盐研究所 透明光功能无机材料重点实验室,上海 201899
2.江苏大学 材料科学与工程学院,江苏 镇江 212013
Published:01 May 2021,
Received:27 December 2020,
Revised:21 January 2021,
扫 描 看 全 文
Jiang LI, Wan-yuan LI, Xin LIU, et al. Research Progress on Phosphor Ceramics for Solid-state Lighting/Display. [J]. Chinese Journal of Luminescence 42(5):580-604(2021)
Jiang LI, Wan-yuan LI, Xin LIU, et al. Research Progress on Phosphor Ceramics for Solid-state Lighting/Display. [J]. Chinese Journal of Luminescence 42(5):580-604(2021) DOI: 10.37188/CJL.20200402.
固态照明作为第四代照明光源因其高效、环保的优势在近30年来得到了飞速发展,广泛应用于各种场景(例如汽车大灯、投影显示、工业生产和远距离照明)。而大功率、高亮度的白色发光二极管(W-LED)及激光照明技术对颜色转换材料的服役稳定性提出了新的要求,荧光陶瓷以其能承受高功率激发密度的独特优势应运而生。本文综合评述了固态照明/显示用荧光陶瓷的最新研究进展,阐明了光源的评估标准,总结了白光及几种单色发光荧光陶瓷在大功率照明和投影显示领域的发展和应用。并阐述了荧光陶瓷中光提取效率、显色指数(CRI)和相关色温(CCT)的提升策略,讨论了激光照明中的发光饱和与发光均匀性问题。最后对荧光陶瓷在固态照明/显示应用中的前景和挑战进行了展望。
As the fourth-generation lighting source
solid-state lighting has developed rapidly in the past 30 years due to its advantages of high efficiency and environmental protection. It is widely used in various scenes such as automobile headlights
projection displays
industrial production
and long-distance lighting. High-power
high-brightness white light-emitting diodes(W-LED) and laser lighting technology put forward new requirements for the service stability of color conversion materials. Phosphor ceramics have emerged with their unique advantages of withstanding high power excitation density. This article comprehensively reviews the latest research progress of phosphor ceramics for solid-state lighting/display
clarifies the evaluation criteria of light sources
summarizes the development and application of white light and several monochromatic fluorescent ceramics in high-power lighting and projection displays. The improvement strategies of light extraction efficiency
color rendering index(CRI) and correlated color temperature(CCT) in phosphor ceramics are described. And the problems of luminous saturation and light uniformity in laser illumination are discussed. Finally
the prospects and challenges of fluorescent ceramics in solid-state lighting/display applications are envisioned.
颜色转换荧光陶瓷高发光效率高发光品质
color conversionphosphor ceramicshigh luminous efficiencyhigh luminous quality
崔元日, 潘苏予. 第四代照明光源——白光LED[J].灯与照明, 2004, 28(2):31-34.
CUI Y R, PAN S Y. The fourth generation lighting source—daylight LED[J].Lamps Light., 2004, 28(2):31-34. (in Chinese)
KAZIMIERCZUK M K, SZARANIEC W. Electronic ballast for fluorescent lamps[J].IEEE Trans. Power Electron.,1993, 8(4):386-395.
SCHUBERT E F, KIM J K. Solid-state light sources getting smart[J].Science, 2005, 308(5726):1274-1278.
PUST P, SCHMIDT P J, SCHNICK W. A revolution in lighting[J].Nat. Mater., 2015, 14(5):454-458.
PHILLIPS J M, COLTRIN M E, CRAWFORD M H, et al.. Research challenges to ultra-efficient inorganic solid-state lighting[J].Laser Photonics Rev., 2007, 1(4):307-333.
MASUI S, YAMAMOTO T, NAGAHAMA S I. A white light source excited by laser diodes[J].Electr. Commun. Jpn., 2015, 98(5):23-27.
WEICHMANN U, BELLANCOURT A R, MACKENS U, et al.. Solid-state lasers for projection[J].J. Soc. Inf. Display, 2010, 18(10):813-820.
CANDRY P, MAXIMUS B. Projection displays:new technologies, challenges, and applications[J].J. Soc. Inf. Display, 2015, 23(8):347-357.
PASCHKE K, BLUME G, WERNER N, et al.. Compact RGBY light sources with high luminance for laser display applications[J].Opt. Rev., 2018, 25(1):149-159.
BASU C, MEINHARDT-WOLLWEBER M, ROTH B. Lighting with laser diodes[J].Adv. Opt. Technol., 2013, 2(4):313-321.
张岳, 郝丽, 柳华, 等. 激光显示的原理与实现[J].光学 精密工程, 2006, 14(3):402-405.
ZHANG Y, HAO L, LIU H, et al.. Principle and realization of laser display technique[J].Opt. Precision Eng., 2006, 14(3):402-405. (in Chinese)
EDGAR G K, EDGAR H E, WARD P A. The effect of viewing a laser-scanned display on colour perception and the visual accommodation response[J].Displays, 2008, 29(2):100-105.
王延伟, 毕勇, 王斌, 等. 大屏幕激光投影与激光电视[J].物理, 2010, 39(4):232-237.
WANG Y W, BI Y, WANG B, et al.. Large screen laser projection display and laser telvision[J].Physics, 2010, 39(4):232-237. (in Chinese)
常宏. 激光显示中散斑抑制和主观散斑跟踪的研究[D].合肥:中国科学技术大学, 2010.
CHANG H. Research on Speckle Suppression in Laser Display and Speckle Tracking in the Image Plane[D].Hefei:University of Science and Technology of China, 2010. (in Chinese)
GOODMAN J W. Speckle Phenomena in Optics:Theory and Applications[M].Englewood:Roberts and Company Publishers, 2007.
HU F, LI Y. Laser and phosphor hybrid source for projection display[C].Proceedings of SPIE 8599, Solid State Lasers XXII:Technology and Devices, San Francisco, CA, 2013: 85991K.
NAKAMURA S, CHICHIBU S F. Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes[M].London:CRC Press, 2000.
NAKAMURA S, PEARTON S, FASOL G. The Blue Laser Diode:The Complete Story[M].2nd ed. Berlin:Springer Science & Business Media, 2000.
XU Y, CHEN L H, LI Y Z, et al.. Phosphor-conversion white light using InGaN ultraviolet laser diode[J].Appl. Phys. Lett., 2008, 92(2):021129-1-3.
RYU H Y, KIM D H. High-brightness phosphor-conversion white light source using InGaN blue laser diode[J].J. Opt. Soc. Korea, 2010, 14(4):415-419.
DENAULT K A, CANTORE M, NAKAMURA S, et al.. Efficient and stable laser-driven white lighting[J].AIP Adv., 2013, 3(7):072107.
LEDRU G, CATALANO C, DUPUIS P, et al.. Efficiency and stability of a phosphor-conversion white light source using a blue laser diode[J].AIP Adv., 2014, 4(10):107134.
BELLANCOURT A R, MACKENS U, MOENCH H, et al.. Blue diode pumped solid-state lasers for digital projection[J].Laser Phys., 2010, 20(3):643-648.
TRAN T K T, CHEN X Y, SVENSEN Ø, et al.. Speckle reduction in laser projection using a dynamic deformable mirror[J].Opt. Express, 2014, 22(9):11152-11166.
DENG Q L, LIN B S, WU P J, et al.. A hybrid temporal and spatial speckle-suppression method for laser displays[J].Opt. Express, 2013, 21(25):31062-31071.
KOERS G, OCKET I, FENG Q, et al.. Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination[J].J. Opt. Soc. Am. A, 2008, 25(2):312-317.
TRAN T K T, SVENSEN Ø, CHEN X Y, et al.. Speckle reduction in laser projection displays through angle and wavelength diversity[J].Appl. Opt., 2016, 55(6):1267-1274.
TUTSCH R, HAN S D, DIERKE H. Reducing the influence of speckle structures on laser light sectioning sensors[J].Meas. Sci. Technol., 2016, 27(12):124003-1-5.
DENG J K, LI W, ZHANG H R, et al.. Eu3+-doped phosphor-in-glass:a route toward tunable multicolor materials for near-UV high-power warm-white LEDs[J].Adv. Opt. Mater., 2017, 5(3):1600910.
YANAGISAWA T, KOJIMA T. Long-term accelerated current operation of white light-emitting diodes[J].J. Lumin., 2005, 114(1):39-42.
IBRAHIM I A M. Structural, electronic and optical properties of prominent M2Si5N8∶Eu2+ phosphors (M=Mg,Ca,Sr,Ba) from the ground-state and excited-state first principles calculations[J].J. Alloy Compd., 2019, 775:30-38.
LI X P, ZHONG H, CHEN B J, et al.. Highly stable and tunable white luminescence from Ag-Eu3+ co-doped fluoroborate glass phosphors combined with violet LED[J].Opt. Express, 2018, 26(2):1870-1881.
QIU J R, SHIMIZUGAWA Y, IWABUCHI Y, et al.. Photostimulated luminescence in Eu2+-doped fluoroaluminate glasses[J].Appl. Phys. Lett., 1997, 71(6):759-761.
ZHOU S F, JIANG N, ZHU B, et al.. Multifunctional bismuth-doped nanoporous silica glass:from blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers[J].Adv. Funct. Mater., 2008, 18(9):1407-1413.
ROCHA A C P, ANDRADE L H C, LIMA S M, et al.. Tunable color temperature of Ce3+/Eu2+,3+ co-doped low silica aluminosilicate glasses for white lighting[J].Opt. Express, 2012, 20(9):10034-10041.
ZHANG X J, HUANG L, PAN F J, et al.. Highly thermally stable single-component white-emitting silicate glass for organic-resin-free white-light-emitting diodes[J].ACS Appl. Mater. Interfaces, 2014, 6(4):2709-2717.
ZHANG X J, WANG J, HUANG L, et al.. Tunable luminescent properties and concentration-dependent, site-preferable distribution of Eu2+ ions in silicate glass for white LEDs applications[J].ACS Appl. Mater. Interfaces, 2015, 7(18):10044-10054.
LAKSHMINARAYANA G, YANG H C, QIU J R. White light emission from Tm3+/Dy3+ co-doped oxyfluoride germanate glasses under UV light excitation[J].J. Solid State Chem., 2009, 182(4):669-676.
LOOS S, MUNGRA M, AHRENS B, et al.. Concentration-dependent luminescence and energy transfer in Tb3+/Eu3+ doped borate and fluorozirconate glasses[J].J. Lumin., 2017, 187:298-303.
SEGAWA H, OGATA S, HIROSAKI N, et al.. Fabrication of glasses of dispersed yellow oxynitride phosphor for white light-emitting diodes[J].Opt. Mater., 2010, 33(2):170-175.
GAO Y, QIU J B, ZHOU D C. Investigation of optical properties:Eu with Al codoping in aluminum silicate glasses and glass-ceramics[J].J. Am. Ceram. Soc., 2017, 100(7):2901-2913.
ZHANG W H, OUYANG S Y, ZHANG Z X, et al.. Luminescent properties of Eu3+-doped glass ceramics containing BaGdF5 nanocrystals under NUV-excitation for W-LEDs[J].Ceram. Int., 2015, 41(10):14035-14040.
WANG L L, MEI L, HE G, et al.. Preparation of Ce∶YAG glass-ceramics with low SiO2[J].J. Am. Ceram. Soc., 2011, 94(11):3800-3803.
HUANG J, LIANG X J, XIANG W D, et al.. Synthesis and luminescence properties of Ce∶Y3Al5O12 glass ceramic by spontaneous crystallization[J].Mater. Lett., 2015, 151:31-34.
CUI Z G, YE R G, DENG D G, et al.. Eu2+/Sm3+ ions co-doped white light luminescence SrSiO3 glass-ceramics phosphor for white LED[J].J. Alloys Compd., 2011, 509(8):3553-3558.
AL-MANSOORI M H, AL-MUHANNA A A, ALAM S U, et al.. 2009 Index IEEE journal of selected topics in quantum electronics Vol. 15[J].IEEE J. Sel. Top. Quant. Electron., 2009, 15(6):1763-1805.
LEDEMI Y, TRUDEL A A, RIVERA V A G, et al.. White light and multicolor emission tuning in triply doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate transparent glass-ceramics[J].J. Mater. Chem. C, 2014, 2(25):5046-5056.
WANG X F, LIU Q, CAI P Q, et al.. Excitation powder dependent optical temperature behavior of Er3+ doped transparent Sr0.69La0.31F2.31 glass ceramics[J].Opt. Express, 2016, 24(16):17792-17804.
EDGAR A, SPAETH J M, SCHWEIZER S, et al.. Photostimulated luminescence in a rare earth-doped fluorobromozirconate glass ceramic[J].Appl. Phys. Lett., 1999, 75(16):2386-2388.
CHEN D Q, CHEN Y. Transparent Ce3+∶Y3Al5O12 glass ceramic for organic-resin-free white-light-emitting diodes[J].Ceram. Int., 2014, 40(9):15325-15329.
ZHANG R, LIN H, YU Y L, et al.. A new-generation color converter for high-power white LED:transparent Ce3+∶YAG phosphor-in-glass[J].Laser Photonics Rev., 2014, 8(1):158-164.
XIANG R, LIANG X J, LI P Z, et al.. A thermally stable warm WLED obtained by screen-printing a red phosphor layer on the LuAG∶Ce3+ PiG substrate[J].Chem. Eng. J., 2016, 306:858-865.
AHN S H, NAM Y H, HAN K, et al.. Phosphor-in-glass thick film formation with low sintering temperature phosphosilicate glass for robust white LED[J].J. Am. Ceram. Soc., 2017, 100(4):1280-1284.
ALLEN S C, STECKL A J. A nearly ideal phosphor-converted white light-emitting diode[J].Appl. Phys. Lett., 2008, 92(14):143309.
HUANG J, HU X L, SHEN J J, et al.. Facile synthesis of a thermally stable Ce3+∶Y3Al5O12 phosphor-in-glass for white LEDs[J].Crystengcomm, 2015, 17(37):7079-7085.
LEE Y K, LEE J S, HEO J, et al.. Phosphor in glasses with Pb-free silicate glass powders as robust color-converting materials for white LED applications[J].Opt. Lett., 2012, 37(15):3276-3278.
CHEN L Y, CHENG W C, TSAI C C, et al.. Novel broadband glass phosphors for high CRI WLEDs[J].Opt. Express, 2014, 22(S3):A671-A678.
CHEN L Y, CHENG W C, TSAI C C, et al.. High-performance glass phosphor for white-light-emitting diodes via reduction of Si-Ce3+∶YAG inter-diffusion[J].Opt. Mater. Express, 2014, 4(1):121-128.
LEE Y K, KIM Y H, HEO J, et al.. Control of chromaticity by phosphor in glasses with low temperature sintered silicate glasses for LED applications[J].Opt. Lett., 2014, 39(14):4084-4087.
ZHU Q Q, XU X, WANG L, et al.. A robust red-emitting phosphor-in-glass (PiG) for use in white lighting sources pumped by blue laser diodes[J].J. Alloys Compd., 2017, 702:193-198.
LEE J S, UNITHRATTIL S, KIM S, et al.. Robust moisture and thermally stable phosphor glass plate for highly unstable sulfide phosphors in high-power white light-emitting diodes[J].Opt. Lett., 2013, 38(17):3298-3300.
ZHANG X J, YU J B, WANG J, et al.. All-inorganic light convertor based on phosphor-in-glass engineering for next-generation modular high-brightness white LEDs/LDs[J].ACS Photonics, 2017, 4(4):986-995.
CHEN H, LIN H, XU J, et al.. Chromaticity-tunable phosphor-in-glass for long-lifetime high-power warm w-LEDs[J].J. Mater. Chem. C, 2015, 3(31):8080-8089.
ZHANG R, WANG B Y, ZHU W F, et al.. Preparation and luminescent performances of transparent screen-printed Ce3+∶Y3Al5O12 phosphors-in-glass thick films for remote white LEDs[J].J. Alloys Compd., 2017, 720:340-344.
ZHANG Y, ZHANG X J, ZHANG H R, et al.. Improving moisture stability of SrLiAl3N4∶Eu2+ through phosphor-in-glass approach to realize its application in plant growing LED device[J].J. Colloid Interface Sci., 2019, 545:195-199.
CHEN Z H, HOU C Y, ZHANG Q H, et al.. Reinforced heat dissipation by simple graphene coating for phosphor-in-glass applied in high-power LED[J].J. Alloys Compd., 2019, 774:954-961.
ZHONG J S, PENG Y Z, CHEN D Q, et al.. Highly efficient rare-earth-free deep red emitting phosphor La2Li1-ySb1-xO6∶xMn4+,yMg2+:application in high-power warm w-LEDs[J].J. Mater. Chem. C, 2018, 6(48):13305-13315.
DENG J K, ZHANG H R, ZHANG X J, et al.. Enhanced luminescence performance of CaO∶Ce3+,Li+,F- phosphor and its phosphor-in-glass based high-power warm LED properties[J].J. Mater. Chem. C, 2018, 6(15):4077-4086.
ZHONG J S, CHEN X, CHEN D Q, et al.. A novel rare-earth free red-emitting Li3Mg2SbO6∶Mn4+ phosphor-in-glass for warm w-LEDs:synthesis, structure, and luminescence properties[J].J. Alloys Compd., 2019, 773:413-422.
DENG J K, ZHANG H R, ZHANG X J, et al.. Ultrastable red-emitting phosphor-in-glass for superior high-power artificial plant growth LEDs[J].J. Mater. Chem. C, 2018, 6(7):1738-1745.
LI M C, ZHANG X J, ZHANG H R, et al.. Highly efficient and dual broad emitting light convertor:an option for next-generation plant growth LEDs[J].J. Mater. Chem. C, 2019, 7(12):3617-3622.
YOU S H, LI S X, ZHENG P, et al.. A thermally robust La3Si6N11∶Ce-in-glass film for high-brightness blue-laser-driven solid state lighting[J].Laser Photonics Rev., 2019, 13(2):1800216-1-10.
GU G R, XIANG W D, YANG C, et al.. Synthesis and luminescence properties of a H2 annealed Mn-doped Y3Al5O12∶Ce3+ single crystal for WLEDs[J].CrystEngComm, 2015, 17(24):4554-4561.
LATYNINA A, WATANABE M, INOMATA D, et al.. Properties of Czochralski grown Ce,Gd∶Y3Al5O12 single crystal for white light-emitting diode[J].J. Alloys Compd., 2013, 553:89-92.
REJMAN M, BABIN V, KUCERKOVÁ R, et al.. Temperature dependence of CIE-x,y color coordinates in YAG∶Ce single crystal phosphor[J].J. Lumin., 2017, 187:20-25.
SALIMIAN A, SILVER J, FERN G R, et al.. Investigating the emission characteristics of single crystal YAG when activated by high power laser beams[J].ECS J. Solid State Sci. Technol., 2016, 5(10):R172-R177.
KANG T W, PARK K W, RYU J H, et al.. Strong thermal stability of Lu3Al5O12∶Ce3+ single crystal phosphor for laser lighting[J].J. Lumin., 2017, 191:35-39.
PARK K W, LIM S G, DERESSA G, et al.. High power and temperature luminescence of Y3Al5O12∶Ce3+ bulky and pulverized single crystal phosphors by a floating-zone method[J].J. Lumin., 2015, 168:334-338.
ARJOCA S, VÍLLORA E G, INOMATA D, et al.. Ce∶(Y1-x-Lux)3Al5O12 single-crystal phosphor plates for high-brightness white LEDs/LDs with high-color rendering (Ra > 90) and temperature stability[J].Mater. Res. Express, 2014, 1(2):025041-1-13.
ZHOU Y, YU C, SONG E, et al.. Three birds with one stone:K2SiF6∶Mn4+ single crystal phosphors for high-power and laser-driven lighting[J].Adv. Opt. Mater., 2020, 8(23):2000976.
ARJOCA S, VÍLLORA E G, INOMATA D, et al.. Temperature dependence of Ce∶YAG single-crystal phosphors for high-brightness white LEDs/LDs[J].Mater. Res. Express, 2015, 2(5):055503-1-9.
CANTORE M, PFAFF N, FARRELL R M, et al.. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J].Opt. Express, 2016, 24(2):A215-A221.
SAI Q L, XIA C T. Tunable colorimetric performance of Al2O3-YAG∶Ce3+ eutectic crystal by Ce3+ concentration[J].J. Lumin., 2017, 186:68-71.
CHUNG W J, NAM Y H. Review—a review on phosphor in glass as a high power LED color converter[J].ECS J. Solid State Sci. Technol., 2020, 9(1):016010-1-15.
ZHOU B Y, LUO W, LIU S, et al.. Enhancing the performance of Ce∶YAG phosphor-in-silica-glass by controlling interface reaction[J].Acta Mater., 2017, 130:289-296.
HUANG P, ZHAO Y Y, WANG J C, et al.. Tunable chromaticity and high color rendering index of WLEDs with CaAlSiN3∶Eu2+ and YAG∶Ce3+ dual phosphor-in-silica-glass[J].J. Am. Ceram. Soc., 2020, 103(9):4989-4998.
ZHU Q Q, WANG X J, WANG L, et al.. β-sialon∶Eu phosphor-in-glass:a robust green color converter for high power blue laser lighting[J].J. Mater. Chem. C, 2015, 3(41):10761-10766.
TSAI C C, CHENG W C, CHANG J K, et al.. Ultra-high thermal-stable glass phosphor layer for phosphor-converted white light-emitting diodes[J].J. Disp. Technol., 2013, 9(6):427-432.
CHHAJED S, XI Y, LI Y L, et al.. Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes[J].J. Appl. Phys., 2005, 97(5):054506-1-8.
肖志国, 石春山, 罗昔贤. 半导体照明发光材料及应用[M].北京:化学工业出版社, 2008.
XIAO Z G, SHI C S, LUO X X. Semiconductor Lighting Luminescent Materials and Applications[M].Beijing:Chemical Industry Press, 2008. (in Chinese)
SONG Y H, HAN G S, JI E K, et al.. The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs[J].J. Mater. Chem. C, 2015, 3(24):6148-6152.
YI X Z, ZHOU S M, CHEN C, et al.. Fabrication of Ce∶YAG,Ce,Cr∶YAG and Ce∶YAG/Ce,Cr∶YAG dual-layered composite phosphor ceramics for the application of white LEDs[J].Ceram. Int., 2014, 40(5):7043-7047.
HU C, SHI Y, FENG X Q, et al.. YAG∶Ce/(Gd,Y)AG∶Ce dual-layered composite structure ceramic phosphors designed for bright white light-emitting diodes with various CCT[J].Opt. Express, 2015, 23(14):18243-18255.
FENG S W, QIN H M, WU G Q, et al.. Spectrum regulation of YAG∶Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application[J].J. Eur. Ceram. Soc., 2017, 37(10):3403-3409.
WANG B, LING J R, ZHOU Y F, et al.. YAG∶Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs[J].J. Lumin., 2019, 213:421-426.
LING J R, ZHOU Y F, XU W T, et al.. Red-emitting YAG∶Ce, Mn transparent ceramics for warm WLEDs application[J].J. Adv. Ceram., 2020, 9(1):45-54.
DU Q P, FENG S W, QIN H M, et al.. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG∶Ce transparent ceramic phosphors[J].J. Mater. Chem. C, 2018, 6(45):12200-12205.
RAUKAS M, KELSO J, ZHENG Y D, et al.. Ceramic phosphors for light conversion in LEDs[J].ECS J. Solid State Sci. Technol., 2012, 2(2):R3168-R3176.
TANG Y R, ZHOU S M, CHEN C, et al.. Composite phase ceramic phosphor of Al2O3-Ce∶YAG for high efficiency light emitting[J].Opt. Express, 2015, 23(14):17923-17928.
TANG Y R, ZHOU S M, YI X Z, et al.. Microstructure optimization of the composite phase ceramic phosphor for white LEDs with excellent luminous efficacy[J].Opt. Lett., 2015, 40(23):5479-5481.
GU C, WANG X J, XIA C, et al.. A new CaF2-YAG∶Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs[J].J. Mater. Chem. C, 2019, 7(28):8569-8574.
HUANG P, ZHOU B Y, ZHENG Q, et al.. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG∶Ce composite ceramics for high luminous efficiency white light-emitting diodes[J].Adv. Mater., 2020, 32(1):1905951.
ZHU Q, DING S N, XIAHOU J Q, et al.. A groundbreaking strategy for fabricating YAG∶Ce3+ transparent ceramic films via sintering of LRH nanosheets on a sapphire substrate[J].Chem. Commun., 2020, 56(84):12761-12764.
WAETZIG K, KUNZER M, KINSKI I. Influence of sample thickness and concentration of Ce dopant on the optical properties of YAG∶Ce ceramic phosphors for white LEDs[J].J. Mater. Res., 2014, 29(19):2318-2324.
LIU G H, ZHOU Z Z, SHI Y, et al.. Ce∶YAG transparent ceramics for applications of high power LEDs:thickness effects and high temperature performance[J].Mater. Lett., 2015, 139:480-482.
HU S, LU C H, ZHOU G H, et al.. Transparent YAG∶Ce ceramics for WLEDs with high CRI:Ce3+ concentration and sample thickness effects[J].Ceram. Int., 2016, 42(6):6935-6941.
郑哲涵, 张翔, 徐小科, 等. 基于Ce3+∶YAG透明陶瓷的大功率LED和LD照明原型器件的发光性能:厚度和表面粗糙度的影响[J].发光学报, 2020, 41(11):1411-1420.
ZHENG Z H, ZHANG X, XU X K, et al.. Thickness and surface roughness effect on lighting performance of Ce3+∶YAG transparent ceramics based high power LED and LD lighting prototype devices[J].Chin. J. Lumin., 2020, 41(11):1411-1420. (in Chinese)
胡盼, 丁慧, 刘永福, 等. YAG∶Ce3+在激光照明应用中的研究进展[J].发光学报, 2020, 41(12):1504-1528.
HU P, DING H, LIU Y F, et al.. Research progress of YAG∶Ce3+ for white laser diode lighting application[J].Chin. J. Lumin., 2020, 41(12):1504-1528. (in Chinese)
SONG Y H, JI E K, JEONG B W, et al.. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting[J].Sci. Rep., 2016, 6(1):31206-1-7.
YAO Q, HU P, SUN P, et al.. YAG∶Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting[J].Adv. Mater., 2020, 32(19):1907888.
LI SX, ZHU Q Q, TANG D M, et al.. Al2O3-YAG∶Ce composite phosphor ceramic:a thermally robust and efficient color converter for solid state laser lighting[J].J. Mater. Chem. C, 2016, 4(37):8648-8654.
PADTURE N P, KLEMENS P G. Low thermal conductivity in garnets[J].J. Am. Ceram. Soc.,1997, 80(4):1018-1020.
KLEIN P H, CROFT W J. Thermal conductivity, diffusivity, and expansion of Y2O3, Y3Al5O12, and LaF3 in the range 77-300 K[J].J. Appl. Phys.,1967, 38(4):1603-1607.
BERMAN R, FOSTER E L, ZIMAN J M. Thermal conduction in artificial sapphire crystals at low temperatures I. Nearly perfect crystals[J].Proc. Roy. Soc. A Math. Phys. Eng. Sci.,1955, 231(1184):130-144.
CAI P Z, GREEN D J, MESSING G L. Constrained densification of alumina/zirconia hybrid laminates, I:experimental observations of processing defects[J].J. Am. Ceram. Soc., 1997, 80(8):1929-1939.
GUPTA T K, VALENTICH J. Thermal expansion of yttrium aluminum garnet[J].J. Am. Ceram. Soc., 1971, 54(7):355-356.
SONG Y H, JI E K, JEONG B W, et al.. Design of laser-driven high-efficiency Al2O3/YAG∶Ce3+ ceramic converter for automotive lighting:fabrication, luminous emittance, and tunable color space[J].Dyes Pigments, 2017, 139:688-692.
JI E K, SONG Y H, BAK S H, et al.. The design of a ceramic phosphor plate with functional materials for application in high power LEDs[J].J. Mater. Chem. C, 2015, 3(48):12390-12393.
LEE M J, ROH Y A, HUMAYOUN U B, et al.. The enhancement of thermal properties of phosphor ceramic plate as sintering aids[J].J. Ceram. Process. Res., 2016, 17(3):144-147.
PARK H K, OH J H, KANG H, et al.. Hybrid 2D photonic crystal-assisted Lu3Al5O12∶Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index[J].ACS Appl. Mater. Interfaces, 2015, 7(8):4549-4559.
MA C Y, TANG F, CHEN J D, et al.. Spectral, energy resolution properties and green-yellow LEDs applications of transparent Ce3+∶Lu3Al5O12 ceramics[J].J. Eur. Ceram. Soc., 2016, 36(16):4205-4213.
ZHANG Q, ZHENG R L, DING J Y, et al.. Excellent luminous efficiency and high thermal stability of glass-in-LuAG ceramic for laser-diode-pumped green-emitting phosphor[J].Opt. Lett., 2018, 43(15):3566-3569.
LI K, SHI Y, JIA F Q, et al.. Low etendue yellow-green solid-state light generation by laser-pumped LuAG∶Ce ceramic[J].IEEE Photonic Technol. Lett., 2018, 30(10):939-942.
XU J, WANG J, GONG Y X, et al.. Investigation of an LuAG∶Ce translucent ceramic synthesized via spark plasma sintering:towards a facile synthetic route, robust thermal performance, and high-power solid state laser lighting[J].J. Eur. Ceram. Soc., 2018, 38(1):343-347.
ZHANG Y L, HU S, WANG Z J, et al.. Pore-existing Lu3Al5O12∶Ce ceramic phosphor:an efficient green color converter for laser light source[J].J. Lumin., 2018, 197:331-334.
XIAO F, XUE Y N, ZHANG Q Y. Bluish-green color emitting Ba2Si3O8∶Eu2+ ceramic phosphors for white light-emitting diodes[J].Spectrochim. Acta A:Mol. Biomol. Spectrosc., 2009, 74(3):758-760.
LI K, WANG H, LIU X, et al.. Mn2+ activated MgAlON transparent ceramic:a new green-emitting transparent ceramic phosphor for high-power white LED[J].J. Eur. Ceram. Soc., 2017, 37(13):4229-4233.
SUN J, LIN H, ZHANG D W, et al.. Green emitting spinel/Ba2SiO4∶Eu2+/spinel sandwich structure robust ceramic phosphor prepared by spark plasma sintering[J].Ceram. Int., 2019, 45(17):23643-23650.
HUA H, FENG S W, OUYANG Z Y, et al.. YAGG∶Ce transparent ceramics with high luminous efficiency for solid-state lighting application[J].J. Adv. Ceram., 2019, 8(3):389-398.
COZZAN C, BRADY M J, O’DEA N, et al.. Monolithic translucent BaMgAl10O17∶Eu2+ phosphors for laser-driven solid state lighting[J].AIP Adv., 2016, 6(10):105005.
PRICHA I, ROSSNER W, MOOS R. Pressureless sintering of luminescent CaAlSiN3∶Eu ceramics[J].J. Ceram. Sci. Technol., 2015, 6(1):63-68.
PRICHA I, ROSSNER W, MOOS R. Layered ceramic phosphors based on CaAlSiN3∶Eu and YAG∶Ce for white light-emitting diodes[J].J. Am. Ceram. Soc., 2016, 99(1):211-217.
LI S X, ZHU Q Q, WANG L, et al.. CaAlSiN3∶Eu2+ translucent ceramic:a promising robust and efficient red color converter for solid state laser displays and lighting[J].J. Mater. Chem. C, 2016, 4(35):8197-8205.
WEN Z C, MA C Y, ZHAO C, et al.. Fabrication and optical properties of Pr3+-doped Ba(Sn,Zr,Mg,Ta)O3 transparent ceramic phosphor[J].Opt. Lett., 2018, 43(11):2438-2441.
TIAN C, LIN H, ZHANG D W, et al.. Mn4+ activated Al2O3 red-emitting ceramic phosphor with excellent thermal conductivity[J].Opt. Express, 2019, 27(22):32666-32678.
ZHANG Y L, HU S, LIU Y L, et al.. Preparation, crystal structure and luminescence properties of red-emitting Lu3Al5O12∶Mn4+ ceramic phosphor[J].J. Eur. Ceram. Soc., 2019, 39(2-3):584-591.
ZHANG Y L, LIU Y L, YANG L, et al.. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors[J].J. Lumin., 2020, 220:117016.
SHANG M M, LI C X, LIN J. How to produce white light in a single-phase host[J].Chem. Soc. Rev., 2014, 43(5):1372-1386.
FERNÁNDEZ-CARRIÓN A J, OCAÑA M, GARCÍA-SEVILLANO J, et al.. New single-phase, white-light-emitting phosphors based on δ-Gd2Si2O7 for solid-state lighting[J].J. Phys. Chem. C, 2014, 118(31):18035-18043.
BOYER M, CARRION A J F, ORY S, et al.. Transparent polycrystalline SrREGa3O7 melilite ceramics:potential phosphors for tuneable solid state lighting[J].J. Mater. Chem. C, 2016, 4(15):3238-3247.
SLACK G A, TANZILLI R A, POHL R O, et al.. The intrinsic thermal conductivity of AIN[J].J. Phys. Chem. Solids,1987, 48(7):641-647.
LEVINSHTEIN M E, RUMYANTSEV S L, SHUR M S. Properties of Advanced Semiconductor Materials:GaN,AIN,InN,BN,SiC,SiGe[M].New York:John Wiley & Sons, 2001.
WIEG A T, KODERA Y, WANG Z, et al.. Thermomechanical properties of rare-earth-doped AlN for laser gain media:the role of grain boundaries and grain size[J].Acta Mater., 2015, 86:148-156.
WIEG A T, PENILLA E H, HARDIN C L, et al.. Broadband white light emission from Ce∶AlN ceramics:high thermal conductivity down-converters for LED and laser-driven solid state lighting[J].APL Mater., 2016, 4(12):126105.
WANG S S, CHEN W T, LI Y, et al.. Neighboring-cation substitution tuning of photoluminescence by remote-controlled activator in phosphor lattice[J].J. Am. Chem. Soc., 2013, 135(34):12504-12507.
BALCI M H, CHEN F, CUNBUL A B, et al.. Comparative study of blue laser diode driven cerium-doped single crystal phosphors in application of high-power lighting and display technologies[J].Opt. Rev., 2018, 25(1):166-174.
LENEF A, KELSO J, ZHENG Y, et al.. Radiance limits of ceramic phosphors under high excitation fluxes[C].Proceedings of SPIE 8841, Current Developments in Lens Design and Optical Engineering ⅩⅣ, San Diego, CA, 2013: 884107.
XU Y R, LI S X, ZHENG P, et al.. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation[J].J. Mater. Chem. C, 2019, 7(37):11449-11456.
COZZAN C, LHEUREUX G, O'DEA N, et al.. Stable, heat-conducting phosphor composites for high-power laser lighting[J].ACS Appl. Mater. Interfaces, 2018, 10(6):5673-5681.
ZHENG P, LI S X, WEI R, et al.. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light[J].Laser Photonics Rev., 2019, 13(10):1900147.
WANG J C, TANG X Y, ZHENG P, et al.. Thermally self-managing YAG∶Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration[J].J. Mater. Chem. C, 2019, 7(13):3901-3908.
NADEAU V J, ELSON D S, NEIL M A A, et al.. Laser-pumped endoscopic illumination source[C].Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 2008: 2059-2062.
NADEAU V J, ELSON D S, HANNA G B, et al.. Modelling of a laser-pumped light source for endoscopic surgery[C].Proceedings of SPIE 7103, Illumination Optics, Glasgow, 2008: 71030J.
0
Views
484
下载量
12
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution