浏览全部资源
扫码关注微信
中国海洋大学 物理系,山东 青岛 266100
Published:01 April 2021,
Received:25 December 2020,
Revised:16 January 2021,
移动端阅览
YI-QIAN TANG, JIAN-XIONG LEI, XIAO-MING ZHANG, et al. Advances in Recoverable Mechanoluminescence in Inorganic Materials. [J]. Chinese journal of luminescence, 2021, 42(4): 404-418.
YI-QIAN TANG, JIAN-XIONG LEI, XIAO-MING ZHANG, et al. Advances in Recoverable Mechanoluminescence in Inorganic Materials. [J]. Chinese journal of luminescence, 2021, 42(4): 404-418. DOI: 10.37188/CJL.20200398.
应力发光是某些材料受到机械刺激时产生的发光现象。许多固体材料在压裂过程中会产生应力发光,但这种破坏性发光限制了材料的实际应用。可再生应力发光的发现为应力发光材料创造了解决现实问题的机会,其在结构健康诊断、力驱动的新型光源和显示器件以及生物力学应力传感器等领域展现出广泛的应用前景。本文对近二十年来无机可再生应力发光材料的研究进展进行了梳理和总结,主要介绍无机可再生应力发光材料的分类、表征、机理和应用四个方面,并讨论了未来研究中所面临的机遇和挑战,以期对该类材料的研发及应用提供有意义的启示。
Mechanoluminescence(ML) is generated during exposures of certain materials to mechanical stimuli. Many solid materials produce ML during their fracturing
however
the irreversibility of fracto-induced ML limits the practical applications of these materials. The discovery of recoverable mechanoluminescence(RML) creates opportunities for ML materials to solve practical problems
such as stress probes for structural health diagnosis
stress-driven advanced light sources and display devices
and biomechanical stress sensors. This review summarizes the research advances of inorganic RML materials in the past two decades. It focuses on the classification
characterization
mechanism and application of RML materials
and concludes with discussions on future directions of ML research and specific challenges to realize real-world applications
with a view to benefitting the development and application of such materials.
应力传感器应力发光应力分布应力成像
stresssensormechanoluminescencestress distributionstress imaging
WALTON A J. Triboluminescence [J].Adv. Phys., 1977, 26(6):887-948.
CHANDRA B P, SHRIVASTAVA K K. Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture [J].J. Phys. Chem. Solids, 1978, 39(9):939-940.
BACON F. The Advancement of Learning [M].New York:Da Capo Press, 1605.
CHANDRA B P. Mechanoluminescence [M].VIJ D R. Luminescence of Solids. Boston:Springer, 1988.
XU C N, WATANABE T, AKIYAMA M, et al. Artificial skin to sense mechanical stress by visible light emission [J].Appl. Phys. Lett., 1999, 74(9):1236-1238.
XU C N, WATANABE T, AKIYAMA M, et al. Direct view of stress distribution in solid by mechanoluminescence [J].Appl. Phys. Lett., 1999, 74(17):2414-2416.
ZHANG J C, WANG X S, MARRIOTT G, et al. Trap-controlled mechanoluminescent materials [J].Prog. Mater. Sci., 2019, 103:678-742.
HAO J H, XU C N. Piezophotonics:from fundamentals and materials to applications [J].MRS Bull., 2018, 43(12):965-969.
FENG A, SMET P F. A review of mechanoluminescence in inorganic solids:compounds, mechanisms, models and applications [J].Materials, 2018, 11(4):484.
BÜNZLI J C G, WONG K L. Lanthanide mechanoluminescence [J].J. Rare Earths, 2018, 36(1):1-41.
PENG D F, CHEN B, WANG F. Recent advances in doped mechanoluminescent phosphors [J].ChemPlusChem, 2015, 80(8):1209-1215.
ZHUANG Y X, TU D, CHEN C J, et al. Force-induced charge carrier storage:a new route for stress recording [J].Light Sci. Appl., 2020, 9:182.
CHANDRA B P, RATHORE A S. Classification of mechanoluminescence [J].Cryst. Res. Technol., 1995, 30(7):885-896.
CHWARTZ M. Encyclopedia of Smart Materials [M].New York:John Wiley and Sons, 2002.
HERSCHEL A S. Triboluminescence [J].Nature, 1899, 60:29.
CHANDRA B P, ZINK J I. Triboluminescence and the dynamics of crystal fracture [J].Phys. Rev. B, 1980, 21(2):816-826.
LAVROV A. Fracture-induced physical phenomena and memory effects in rocks:a review [J].Strain, 2005, 41(4):135-149.
WEI X Y, WANG X D, KUANG S Y, et al. Dynamic triboelectrification-induced electroluminescence and its use in visualized sensing [J].Adv. Mater., 2016, 28(31):6656-6664.
XU C N, YAMADA H, WANG X S, et al. Strong elasticoluminescence from monoclinic-structure SrAl2O4 [J].Appl. Phys. Lett., 2004, 84(16):3040-3042.
JIA Y, YEI M, JIA W Y. Stress-induced mechanoluminescence in SrAl2O4:Eu2+, Dy3+ [J].Opt. Mater., 2006, 28(8-9):974-979.
TIMILSINA S, LEE K H, KWON Y N, et al. Optical evaluation of in situ crack propagation by using mechanoluminescence of SrAl2O4:Eu2+, Dy3+ [J].J. Am. Ceram. Soc., 2015, 98(7):2197-2204.
ZHANG H W, YAMADA H, TERASAKI N, et al. Ultraviolet mechanoluminescence from SrAl2O4:Ce and SrAl2O4:Ce, Ho [J].Appl. Phys. Lett., 2007, 91(8):081905-1-3.
ZHENG L, TERASAKI N, YAMADA H, et al. Near-infrared mechanoluminescent properties in the compounds of SrAl2O4 [C].Proceedings of Int. Forum Mechanoluminescence Novel Struct Health Diagnosis, Fukuoka, 2011:215-219.
TERASAWA Y, XU C N, YAMADA H, et al. Near infrared mechanoluminescence from strontium aluminate doped with rare-earth ions [J].IOP Conf. Ser. Mater. Sci. Eng., 2011, 18(21):212013-1-4.
AKIYAMA M, XU C N, MATSUI H, et al. Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light [J].Appl. Phys. Lett., 1999, 75(17):2548-2550.
ZHANG H W, YAMADA H, TERASAKI N, et al. Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu, Dy [J].J. Electrochem. Soc., 2008, 155(2):J55-J57.
WANG X, XU C N, YAMADA H, et al. Electro-mechano-optical conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics [J].Adv. Mater., 2005, 17(10):1254-1258.
ZHANG J C, WANG X S, YAO X, et al. Strong elastico-mechanoluminescence in diphase (Ba, Ca)TiO3:Pr3+ with self-assembled sandwich architectures [J].J. Electrochem. Soc., 2010, 157(12):G269-G273.
BOTTERMAN J, VAN DEN EECKHOUT K, DE BAERE I, et al. Mechanoluminescence in BaSi2O2N2:Eu [J].Acta Mater., 2012, 60(15):5494-5500.
KAMIMURA S, YAMADA H, XU C N. Strong reddish-orange light emission from stress-activated Srn+1SnnO3n+1:Sm3+(n=1, 2, ∞) with perovskite-related structures [J].Appl. Phys. Lett., 2012, 101(9):091113-1-4.
TU D, HAMABE R, XU C N. Sustainable mechanoluminescence by designing a novel pinning trap in crystals [J].J. Phys. Chem. C, 2018, 122(41):23307-23311.
TU D, XU C N, KAMIMURA S, et al. Ferroelectric Sr3Sn2O7:Nd3+:a new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence [J].Adv. Mater., 2020, 32(25):1908083.
TU D, XU C N, YOSHIDA A, et al. LiNbO3:Pr3+:a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence [J].Adv. Mater., 2017, 29(22):1606914.
ZHANG J C, PAN C, ZHU Y F, et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting [J].Adv. Mater., 2018, 30(49):1804644-1-9.
ZHANG J C, LONG Y Z, YAN X, et al. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping [J].Chem. Mater., 2016, 28(11):4052-4057.
JIANG T, ZHU Y F, ZHANG J C, et al. Multistimuli-responsive display materials to encrypt differentiated information in bright and dark fields [J].Adv. Funct. Mater., 2019, 29(5):1906068-1-10.
ZHOU J Y, GU Y, LU J Y, et al. An ultra-strong non-pre-irradiation and self-recoverable mechanoluminescent elastomer [J].Chem. Eng. J., 2020, 390:124473.
JEONG S M, SONG S, LEE S K, et al. Mechanically driven light-generator with high durability [J].Appl. Phys. Lett., 2013, 102(5):051110-1-5.
WU X, ZHU X J, CHONG P, et al. Sono-optogenetics facilitated by a circulation-delivered rechargeable light source for minimally invasive optogenetics [J].Proc. Natl. Acad. Sci. USA, 2019, 116(52):26332-26342.
ZHANG J C, XU C N, KAMIMURA S, et al. An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses [J].Opt. Express, 2013, 21(11):12976-12986.
ZHANG J C, ZHAO L Z, LONG Y Z, et al. Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect [J].Chem. Mater., 2015, 27(21):7481-7489.
PAN C, ZHANG J C, ZHANG M, et al. Intrinsic oxygen vacancies mediated multi-mechano-responsive piezoluminescence in undoped zinc calcium oxysulfide [J].Appl. Phys. Lett., 2017, 110(23):233904-1-5.
TU D, XU C N, FUJIO Y, et al. Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu [J].Light Sci. Appl., 2015, 4(11):e356-1-7.
ZHANG H L, PENG D F, WANG W, et al. Mechanically induced light emission and infrared-laser-induced upconversion in the Er-doped CaZnOS multifunctional piezoelectric semiconductor for optical pressure and temperature sensing [J].J. Phys. Chem. C, 2015, 119(50):28136-28142.
LI L J, WONDRACZEK L, LI L H, et al. CaZnOS:Nd3+ emits tissue-penetrating near-infrared light upon force loading [J].ACS Appl. Mater. Interfaces, 2018, 10(17):14509-14516.
DU Y Y, JIANG Y, SUN T Y, et al. Mechanically excited multicolor luminescence in lanthanide ions [J].Adv. Mater., 2019, 31(7):1807062-1-8.
TU D, PENG D F, XU C N, et al. Mechanoluminescence properties of red-emitting piezoelectric semiconductor MZnOS:Mn2+ (M=Ca, Ba) with layered structure [J].J. Ceram. Soc. Jpn., 2016, 124(6):702-705.
CHEN C J, ZHUANG Y X, TU D, et al. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO [J].Nano Energy, 2020, 63:104329.
ZHANG J C, FAN X H, YAN X, et al. Sacrificing trap density to achieve short-delay and high-contrast mechanoluminescence for stress imaging [J].Acta Mater., 2018, 152:148-154.
CHEN H M, WU L W, BO F, et al. Coexistence of self-reduction from Mn4+ to Mn2+ and elastico-mechanoluminescence in diphase KZn(PO3)3:Mn2+ [J].J. Mater. Chem. C, 2019, 7(23):7096-7103.
LIU Y, XU C N. Influence of calcining temperature on photoluminescence and triboluminescence of europium-doped strontium aluminate particles prepared by sol-gel process [J].J. Phys. Chem. B, 2003, 107(17):3991-3995.
LI C Z, IMAI Y, ADACHI Y, et al. One-step synthesis of luminescent nanoparticles of complex oxide, strontium aluminate [J].J. Am. Ceram. Soc., 2007, 90(7):2273-2275.
XU C N, WATANABE T, AKIYAMA M, et al. Preparation and characteristics of highly triboluminescent ZnS film [J].Mater. Res. Bull., 1999, 34(10-11):1491-1500.
YAMADA H, FU X Y, XU C N. Enhancement of adhesion and triboluminescent properties of SrAl2O4:Eu2+ films fabricated by RF magnetron sputtering and postannealing techniques [J].J. Electrochem. Soc., 2007, 54(11):J348-J351.
WONG M C, CHEN L, TSANG M K, et al. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect [J].Adv. Mater., 2015, 27(30):4488-4495.
ZHANG J, BAO L K, LOU H Q, et al. Flexible and stretchable mechanoluminescent fiber and fabric [J].J. Mater. Chem. C, 2017, 5(32):8027-8032.
JEONG S M, SONG S, SEO H J, et al. Battery-free, human-motion-powered light-emitting fabric:mechanoluminescent textile [J].Adv. Sustain. Syst., 2017, 1(12):1700126.
QIAN X, CAI Z R, SU M, et al. Printable skin-driven mechanoluminescence devices via nanodoped matrix modification [J].Adv. Mater., 2018, 30(25):1800291-1-6.
ZHAN T Z, XU C N, YAMADA H, et al. Enhancement of impact-induced mechanoluminescence by swift heavy ion irradiation [J].Appl. Phys. Lett., 2012, 100(1):014101-1-3.
ZHAN T Z, XU C N, FUKUDA O, et al. Direct visualization of ultrasonic power distribution using mechanoluminescent film [J].Ultrason. Sonochem., 2011, 18(1):436-439.
KIM J S, KIM G W. New non-contacting torque sensor based on the mechanoluminescence of ZnS:Cu microparticles [J].Sens. Actuators A Phys., 2014, 218:125-131.
JEONG S M, SONG S, JOO K I, et al. Bright, wind-driven white mechanoluminescence from zinc sulphide microparticles embedded in a polydimethylsiloxane elastomer [J].Energy Environ. Sci., 2014, 7(10):3338-3346.
SAKAI K, KOGA T, IMAI Y, et al. Observation of mechanically induced luminescence from microparticles [J].Phys. Chem. Chem. Phys., 2006, 8(24):2819-2822.
KERSEMANS M, SMET P F, LAMMENS N, et al. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence [J].Appl. Phys. Lett., 2015, 107(23):234102-1-5.
XU C N, ZHENG X G, AKIYAMA M, et al. Dynamic visualization of stress distribution by mechanoluminescence image [J].Appl. Phys. Lett., 2000, 76(2):179-181.
WONG M C, CHEN L, BAI G X, et al. Temporal and remote tuning of piezophotonic-effect-induced luminescence and color gamut via modulating magnetic field [J].Adv. Mater., 2017, 29(43):1701945-1-7.
PATEL D K, COHEN B E, ETGAR L, et al. Fully 2D and 3D printed anisotropic mechanoluminescent objects and their application for energy harvesting in the dark [J].Mater. Horiz., 2018, 5(4):708-714.
刘恩科,朱秉升,罗晋生. 半导体物理学 [M]. 第7版. 北京:电子工业出版社,2011.
CHANDRA V K, CHANDRA B P, JHA P. Strong luminescence induced by elastic deformation of piezoelectric crystals [J].Appl. Phys. Lett., 2013, 102(24):241105-1-4.
MATSUI H, XU C N, LIU Y, et al. Origin of mechanoluminescence from Mn-activated ZnAl2O4:triboelectricity-induced electroluminescence [J].Phys. Rev. B, 2004, 69(23):235109-1-7.
WANG X D, ZHANG H L, YU R M, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process [J].Adv. Mater., 2015, 27(14):2324-2331.
CHANDRA V K, CHANDRA B P, JHA P. Self-recovery of mechanoluminescence in ZnS:Cu and ZnS:Mn phosphors by trapping of drifting charge carriers [J].Appl. Phys. Lett., 2013, 103(16):161113-1-5.
ZHOU Y, YANG Y L, FAN Y T, et al. Intense red photoluminescence and mechanoluminescence from Mn2+- activated SrZnSO with a layered structure [J].J. Mater. Chem. C, 2019, 7(26):8070-8078.
XU C N. The creation of safety monitoring network systems based on mechanoluminescence sensors [C].Proceedings of International Forum Mechanoluminescence Novel Structual Health Diagnosis, Fukuoka, 2011:6-25.
ZHANG J C, XUE X Y, ZHU Y F, et al. Ultra-long-delay sustainable and short-term-friction stable mechanoluminescence in Mn2+-activated NaCa2GeO4F with centrosymmetric structure [J].Chem. Eng. J., 2021, 406:126798.
LIU L S, XU C N, YOSHIDA A, et al. Scalable elasticoluminescent strain sensor for precise dynamic stress imaging and onsite infrastructure diagnosis [J].Adv. Mater. Technol., 2019, 4(1):1800336-1-10.
HYODO K, TERASAWA Y, XU C N, et al. Mechanoluminescent stress imaging for hard tissue biomechanics [J].J. Biomech., 2012, 45(S1):S263.
FUJIO Y, XU C N, TERASAWA Y, et al. Sheet sensor using SrAl2O4:Eu mechanoluminescent material for visualizing inner crack of high-pressure hydrogen vessel [J].Int. J. Hydrogen Energy, 2016, 41(2):1333-1340.
ZHAO X, ZHANG Z, LIAO Q L, et al. Self-powered user-interactive electronic skin for programmable touch operation platform [J].Sci. Adv., 2020, 6(28):eaba4294-1-7.
JANG J, KIM H, JI S, et al. Mechanoluminescent, air-dielectric MoS2 transistors as active-matrix pressure sensors for wide detection ranges from footsteps to cellular motions [J].Nano Lett., 2020, 20(1):66-74.
ZHANG Y Y, ZHANG X, WANG H J, et al. Remote regulation of optogenetic proteins by a magneto-luminescence microdevice [J].Adv. Funct. Mater., 2021, 31(4):2006357.
HUANG B L, PENG D F, PAN C F. “Energy Relay Center” for doped mechanoluminescence materials:a case study on Cu-doped and Mn-doped CaZnOS [J].Phys. Chem. Chem. Phys., 2017, 19(2):1190-1208.
XIONG P X, HUANG B L, PENG D F, et al. Self-recoverable mechanically induced instant luminescence from Cr3+-doped LiGa5O8 [J].Adv. Funct. Mater., 2021, doi: 10.1002/adfm.202010685http://doi.org/10.1002/adfm.202010685.
ZHANG J C, GAO N, LI L, et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution [J].Adv. Funct. Mater., 2021, doi: 10.1002/adfm.202100221http://doi.org/10.1002/adfm.202100221.
0
Views
1356
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution