Qi-yang CHEN, Lei SHI, Zu-wei YAN. Conversion Efficiency of Strained Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot Solar Cell Under Influence of Built-in Electric Field. [J]. Chinese Journal of Luminescence 42(4):534-541(2021)
DOI:
Qi-yang CHEN, Lei SHI, Zu-wei YAN. Conversion Efficiency of Strained Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot Solar Cell Under Influence of Built-in Electric Field. [J]. Chinese Journal of Luminescence 42(4):534-541(2021) DOI: 10.37188/CJL.20200370.
Conversion Efficiency of Strained Wurtzite ZnSnN2/InxGa1-xN Cylindrical Quantum Dot Solar Cell Under Influence of Built-in Electric Field
N cylindrical quantum dot is calculated theoretically by a variational method. Furthermore
based on the detailed balance theory
the relationship between the conversion efficiency of cylindrical quantum dot solar cell and the radius
height and In component of quantum dot under the influence of built-in electric field and multiple exciton generation are studied. The results show that the conversion efficiency of quantum dot solar cell increases monotonously with the increase of quantum dot radius
height and In component. The multiple exciton generation can obviously improve the conversion efficiency of solar cells
but the built-in electric field can reduce the conversion efficiency of solar cells significantly.
关键词
柱形量子点太阳能电池转换效率内建电场多重激子效应
Keywords
cylindrical quantum dotsolar cellconversion efficiencybuilt-in electric fieldmultiple exciton generation
references
赵玉文. 太阳电池新进展 [J].物理, 2004, 33(2):99-105.
ZHAO Y W. Recent progress in solar cells [J].Physics, 2004, 33(2):99-105. (in Chinese)
LUQUE A, MARTI A, CUADRA L. Thermodynamic consistency of sub-bandgap absorbing solar cell proposals [J].IEEE. Trans. Electron. Devices, 2001, 48(9):2118-2124.
ZHANG L, SUN Q, ZHU Y Y, et al. Improving performance of polymer solar cells by regulating PbSe quantum dots [J].Chin. J. Lumin., 2019, 40(10):1267-1273. (in Chinese)
YAN X M, WANG Q K. Application of CdSe/ZnSe/ZnS quantum dots in monocrystalline silicon solar cells [J].Chin. J. Lumin., 2013, 34(10):1358-1361. (in Chinese)
WENG Z S, LIN X J. Research progress of quantum dots in photoelectric functional devices [J].Chin. Polym. Bull., 2018(8):99-104. (in Chinese)
HSU L, WALUKIEWICZ W. Modeling of InGaN/Si tandem solar cells [J].J. Appl. Phys., 2008, 104(2):024507-1-7.
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J].J. Appl. Phys., 1961, 32(3):510-519.
BINKS D J. Multiple exciton generation in nanocrystal quantum dots-controversy, current status and future prospects [J].Phys. Chem. Chem. Phys., 2011, 13(28):12693-12704.
KLIMOV V I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication [J].Annu. Rev. Condens. Matter. Phys., 2014, 5:285-316.
SMITH C, BINKS D. Multiple exciton generation in colloidal nanocrystals [J].Nanomaterials, 2014, 4(1):19-45.
GORDI M, MORAVVEJ-FARSHI M K, RAMEZANI H. Effects of electric fields on multiple exciton generation [J].ChemPhyschem, 2018, 19(20):2782-2787.
LIU C J, LU M, SU W A, et al. Recent advance in multiple exciton generation in semiconductor nanocrystals [J].Acta Phys. Sinica, 2018, 67(2):027302-1-17. (in Chinese)
LU H D, TIE S N. Multiple exciton generation in Si BC8 quantum dots solar cell [J].Chin. J. Lumin., 2018, 39(5):668-673. (in Chinese)
QUAYLE P C, HE K L, SHAN J, et al. Synthesis, lattice structure, and band gap of ZnSnN2 [J].MRS Commun., 2013, 3(3):135-138.
KHAN I S, HEINSELMAN KN, ZAKUTAYEV A. Review of ZnSnN2 semiconductor material [J].J. Phys. Energy, 2020, 2(3):032007-1-3.
KAWAMURA F, YAMADA N, CAO Y, et al. The bandgap of ZnSnN2 with a disordered-wurtzite structure [J].Jpn. J. Appl. Phys., 2019, 58:SC1034-1-4.
FENG Z Y, YAN Z W. Polaron effect on the optical rectification in spherical quantum dots with electric field [J].Chin. Phys. B, 2016, 25(10):107804-1-6.
SHI L, YAN Z W. Electric field and shape effect on the linear and nonlinear optical properties of multi-shell ellipsoidal quantum dots [J].Superlat. Microstruct., 2016, 94:204-214.
KARIM R, ZHAO H P. Design of InGaN-ZnSnN2 quantum wells for high-efficiency amber light emitting diodes [J].J. Appl. Phys., 2018, 124(3):034303-1-5.
LAIDOUCI A, AISSAT A, VILCOT J P. Numerical study of solar cells based on ZnSnN2 structure [J].Solar Energy, 2020, 211:237-243.
ARCA E, FIORETTI A, LANY S, et al. Band edge positions and their impact on the simulated device performance of ZnSnN2-based solar cells [J].IEEE J. Photovolt., 2018, 8(1):110-117.
AROUTIOUNIAN V, PETROSYAN S, KHACHATRYAN A, et al. Quantum dot solar cells [J].J. Appl. Phys., 2001, 89(4):2268-2271.
BISWAS A K, CHATTERJEE A, BISWAS S, et al. Analysis of the p+n n+ back surface field silicon solar cell and its comparison with the conventional p+n structure [J].Int. J. Appl. Eng. Res., 2016, 10(3):33025-33028.
WOLF M, BRENDEL R, WERNER J H, et al. Solar cell efficiency and carrier multiplication in Si1-xGex alloys [J].J. Appl. Phys., 1998, 83(8):4213-4221.
WERNER J H, KOLODINSKI S, QUEISSER H J. Novel optimization principles and efficiency limits for semiconductor solar cells [J].Phys. Rev. Lett., 1994, 72(24):3851-3854.
HANNA M C, NOZIK A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers [J].J. Appl. Phys., 2006, 100(7):074510-1-8.
SAHIN M. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells [J].J. Phys. Condens. Matter., 2018, 30(20):205301-1-8.
DAI X Q, HUANG F Z, ZHENG D M. Influence of Al content on exciton confined inGaN/AlxGa1-xN quantum dots [J].Chin. J. Semicond., 2005, 26(4):697-701. (in Chinese)
CUI H L, XU B R. Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot [J].Phys. Lett. A, 2008, 372(6):888-892.
WAGNER J M, BECHSTEDT F. Properties of strained wurtzite GaN and AlN:Ab initio studies [J].Phys. Rev. B, 2002, 66(11):115202-1-20.
MILLER D A B, CHEMLA D S, DAMEN T C, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures [J].Phys. Rev. B, 1985, 32(2):1043-1060.
WU J W, NURMIKKO A V. Stark shifts on exciton luminescence in quantum wells:effect of Coulomb interaction [J].Phys. Rev. B, 1987, 36(9):4902-4905.
FENG Y P, SPECTOR H N. Exciton energies as a function of electric field:confined quantum Stark effect [J].Phys. Rev. B, 1993, 48(3):1963-1966.
YILDIRIM H. Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures [J].Phys. Lett. A, 2019, 383(12):1324-1329.
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants ofⅢ-V nitrides [J].Phys. Rev. B, 1997, 56(16):R10024-R10027.
TSUNODAN , KUMAGAI Y, TAKAHASHI A, et al. Electrically benign defect behavior in zinc tin nitride revealed from first principles [J].Phys. Rev. Appl., 2018, 10(1):011001-1-6.
DE VOS A, DESOETE B. On the ideal performance of solar cells with larger-than-unity quantum efficiency [J].Solar Energy Mater. Solar Cells, 1998, 51(3-4):413-424.
ZHU D H, ZHONG R, CAO Y, et al. Size-dependent electron injection and photoelectronic properties of CuInS2 quantum dot sensitized solar cells [J].Acta Phys. Chim. Sinics, 2014, 30(10):1861-1866. (in Chinese)
SHA W E I, ZHANG H, WANG Z S, et al. Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model [J].Adv. Energy Mater., 2018, 8(8):1701586-1-7.
Hydrogenic Donor Impurity States in a Cylindrical Wurtzite GaN Quantum Dot
Cs2(Ag∶Cu)BiBr6 Double Perovskite Solar Cells
Progress of Two-dimensional Perovskite Solar Cells Based on Aromatic Organic Spacers
Progress of Lead-free Perovskite Photovoltaic Materials and Devices
Related Author
Qi-yang CHEN
Lei SHI
Zu-wei YAN
ZHENG Dong-mei
WANG Zong-chi
XIAO Rong-hui
CAO Shishuang
WANG Baoning
Related Institution
School of Science, Inner Mongolia Agricultural University
Department of Physics and Electromechanical Engineering, Sanming University
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Institute of Polymer Chemistry, College of Chemistry, Nankai University
School of Material Science and Engineering, Hebei University of Technology