浏览全部资源
扫码关注微信
内蒙古农业大学 理学院,内蒙古 呼和浩特 010018
Published:01 April 2021,
Received:04 December 2020,
Revised:04 January 2021,
移动端阅览
QI-YANG CHEN, LEI SHI, ZU-WEI YAN. Conversion Efficiency of Strained Wurtzite ZnSnN2/In
QI-YANG CHEN, LEI SHI, ZU-WEI YAN. Conversion Efficiency of Strained Wurtzite ZnSnN2/In
在有效质量近似下,通过变分理论计算了应变纤锌矿ZnSnN
2
/In
x
Ga
1-
x
N柱形量子点的带隙,进而利用细致平衡理论,研究了柱形量子点太阳能电池的转换效率在多重激子效应以及内建电场的影响下随量子点半径、高度和In组分的变化关系。结果表明,量子点太阳能电池的转换效率随着量子点半径、高度以及In组分的增加单调增加。多重激子效应能够明显提高太阳能电池的转换效率,但是内建电场会使得太阳能电池的转换效率明显降低。
Within the effective mass approximation
the band gap of strained wurtzite ZnSnN
2
/In
x
Ga
1-
x
N cylindrical quantum dot is calculated theoretically by a variational method. Furthermore
based on the detailed balance theory
the relationship between the conversion efficiency of cylindrical quantum dot solar cell and the radius
height and In component of quantum dot under the influence of built-in electric field and multiple exciton generation are studied. The results show that the conversion efficiency of quantum dot solar cell increases monotonously with the increase of quantum dot radius
height and In component. The multiple exciton generation can obviously improve the conversion efficiency of solar cells
but the built-in electric field can reduce the conversion efficiency of solar cells significantly.
柱形量子点太阳能电池转换效率内建电场多重激子效应
cylindrical quantum dotsolar cellconversion efficiencybuilt-in electric fieldmultiple exciton generation
赵玉文. 太阳电池新进展 [J].物理, 2004, 33(2):99-105.
ZHAO Y W. Recent progress in solar cells [J].Physics, 2004, 33(2):99-105. (in Chinese)
LUQUE A, MARTI A, CUADRA L. Thermodynamic consistency of sub-bandgap absorbing solar cell proposals [J].IEEE. Trans. Electron. Devices, 2001, 48(9):2118-2124.
张梁,孙强,朱阳阳,等. PbSe量子点调控的聚合物太阳能电池性能 [J].发光学报,2019,40(10):1267-1273.
ZHANG L, SUN Q, ZHU Y Y, et al. Improving performance of polymer solar cells by regulating PbSe quantum dots [J].Chin. J. Lumin., 2019, 40(10):1267-1273. (in Chinese)
严兴茂,王庆康. CdSe/ZnSe/ZnS量子点在单晶太阳能电池中的应用 [J].发光学报,2013,34(10):1358-1361.
YAN X M, WANG Q K. Application of CdSe/ZnSe/ZnS quantum dots in monocrystalline silicon solar cells [J].Chin. J. Lumin., 2013, 34(10):1358-1361. (in Chinese)
翁增胜,林秀菊. 量子点在光电功能器件的研究进展 [J].高分子通报,2018(8):99-104.
WENG Z S, LIN X J. Research progress of quantum dots in photoelectric functional devices [J].Chin. Polym. Bull., 2018(8):99-104. (in Chinese)
HSU L, WALUKIEWICZ W. Modeling of InGaN/Si tandem solar cells [J].J. Appl. Phys., 2008, 104(2):024507-1-7.
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells [J].J. Appl. Phys., 1961, 32(3):510-519.
BINKS D J. Multiple exciton generation in nanocrystal quantum dots-controversy, current status and future prospects [J].Phys. Chem. Chem. Phys., 2011, 13(28):12693-12704.
KLIMOV V I. Multicarrier interactions in semiconductor nanocrystals in relation to the phenomena of Auger recombination and carrier multiplication [J].Annu. Rev. Condens. Matter. Phys., 2014, 5:285-316.
SMITH C, BINKS D. Multiple exciton generation in colloidal nanocrystals [J].Nanomaterials, 2014, 4(1):19-45.
GORDI M, MORAVVEJ-FARSHI M K, RAMEZANI H. Effects of electric fields on multiple exciton generation [J].ChemPhyschem, 2018, 19(20):2782-2787.
刘长菊,卢敏,苏未安,等. 纳米半导体中多重激子效应研究进展 [J].物理学报,2018,67(2):027302-1-17.
LIU C J, LU M, SU W A, et al. Recent advance in multiple exciton generation in semiconductor nanocrystals [J].Acta Phys. Sinica, 2018, 67(2):027302-1-17. (in Chinese)
卢辉东,铁生年. 硅BC8量子点太阳能电池中的多重激子效应 [J].发光学报,2018,39(5):668-673.
LU H D, TIE S N. Multiple exciton generation in Si BC8 quantum dots solar cell [J].Chin. J. Lumin., 2018, 39(5):668-673. (in Chinese)
QUAYLE P C, HE K L, SHAN J, et al. Synthesis, lattice structure, and band gap of ZnSnN2 [J].MRS Commun., 2013, 3(3):135-138.
KHAN I S, HEINSELMAN KN, ZAKUTAYEV A. Review of ZnSnN2 semiconductor material [J].J. Phys. Energy, 2020, 2(3):032007-1-3.
KAWAMURA F, YAMADA N, CAO Y, et al. The bandgap of ZnSnN2 with a disordered-wurtzite structure [J].Jpn. J. Appl. Phys., 2019, 58:SC1034-1-4.
FENG Z Y, YAN Z W. Polaron effect on the optical rectification in spherical quantum dots with electric field [J].Chin. Phys. B, 2016, 25(10):107804-1-6.
SHI L, YAN Z W. Electric field and shape effect on the linear and nonlinear optical properties of multi-shell ellipsoidal quantum dots [J].Superlat. Microstruct., 2016, 94:204-214.
KARIM R, ZHAO H P. Design of InGaN-ZnSnN2 quantum wells for high-efficiency amber light emitting diodes [J].J. Appl. Phys., 2018, 124(3):034303-1-5.
LAIDOUCI A, AISSAT A, VILCOT J P. Numerical study of solar cells based on ZnSnN2 structure [J].Solar Energy, 2020, 211:237-243.
ARCA E, FIORETTI A, LANY S, et al. Band edge positions and their impact on the simulated device performance of ZnSnN2-based solar cells [J].IEEE J. Photovolt., 2018, 8(1):110-117.
AROUTIOUNIAN V, PETROSYAN S, KHACHATRYAN A, et al. Quantum dot solar cells [J].J. Appl. Phys., 2001, 89(4):2268-2271.
BISWAS A K, CHATTERJEE A, BISWAS S, et al. Analysis of the p+n n+ back surface field silicon solar cell and its comparison with the conventional p+n structure [J].Int. J. Appl. Eng. Res., 2016, 10(3):33025-33028.
WOLF M, BRENDEL R, WERNER J H, et al. Solar cell efficiency and carrier multiplication in Si1-xGex alloys [J].J. Appl. Phys., 1998, 83(8):4213-4221.
WERNER J H, KOLODINSKI S, QUEISSER H J. Novel optimization principles and efficiency limits for semiconductor solar cells [J].Phys. Rev. Lett., 1994, 72(24):3851-3854.
HANNA M C, NOZIK A J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers [J].J. Appl. Phys., 2006, 100(7):074510-1-8.
SAHIN M. Effect of the shell material and confinement type on the conversion efficiency of core/shell quantum dot nanocrystal solar cells [J].J. Phys. Condens. Matter., 2018, 30(20):205301-1-8.
戴宪起,黄凤珍,郑冬梅. Al含量对GaN/AlxGa1-xN量子点中激子态的影响 [J].半导体学报,2005,26(4):697-701.
DAI X Q, HUANG F Z, ZHENG D M. Influence of Al content on exciton confined inGaN/AlxGa1-xN quantum dots [J].Chin. J. Semicond., 2005, 26(4):697-701. (in Chinese)
CUI H L, XU B R. Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot [J].Phys. Lett. A, 2008, 372(6):888-892.
WAGNER J M, BECHSTEDT F. Properties of strained wurtzite GaN and AlN:Ab initio studies [J].Phys. Rev. B, 2002, 66(11):115202-1-20.
MILLER D A B, CHEMLA D S, DAMEN T C, et al. Electric field dependence of optical absorption near the band gap of quantum-well structures [J].Phys. Rev. B, 1985, 32(2):1043-1060.
WU J W, NURMIKKO A V. Stark shifts on exciton luminescence in quantum wells:effect of Coulomb interaction [J].Phys. Rev. B, 1987, 36(9):4902-4905.
FENG Y P, SPECTOR H N. Exciton energies as a function of electric field:confined quantum Stark effect [J].Phys. Rev. B, 1993, 48(3):1963-1966.
YILDIRIM H. Effects of built-in electric field on donor binding energy in InGaN/ZnSnN2 quantum well structures [J].Phys. Lett. A, 2019, 383(12):1324-1329.
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants ofⅢ-V nitrides [J].Phys. Rev. B, 1997, 56(16):R10024-R10027.
TSUNODAN , KUMAGAI Y, TAKAHASHI A, et al. Electrically benign defect behavior in zinc tin nitride revealed from first principles [J].Phys. Rev. Appl., 2018, 10(1):011001-1-6.
DE VOS A, DESOETE B. On the ideal performance of solar cells with larger-than-unity quantum efficiency [J].Solar Energy Mater. Solar Cells, 1998, 51(3-4):413-424.
朱德华,钟蓉,曹宇,等. CuInS2量子点敏化太阳能电池中尺寸依赖的电子注入和光电性质 [J].物理化学学报,2014,30(10):1861-1866.
ZHU D H, ZHONG R, CAO Y, et al. Size-dependent electron injection and photoelectronic properties of CuInS2 quantum dot sensitized solar cells [J].Acta Phys. Chim. Sinics, 2014, 30(10):1861-1866. (in Chinese)
SHA W E I, ZHANG H, WANG Z S, et al. Quantifying efficiency loss of perovskite solar cells by a modified detailed balance model [J].Adv. Energy Mater., 2018, 8(8):1701586-1-7.
0
Views
109
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution