浏览全部资源
扫码关注微信
1.武汉大学 物理科学与技术学院, 湖北 武汉 430072
2.武汉大学 苏州研究院, 江苏 苏州 215123
Published:2021-02,
Received:30 November 2020,
Accepted:2020-12-14
移动端阅览
XIU-XIA YANG, DONG TU. Recent Advances of Near-infrared Mechanoluminescent Materials. [J]. Chinese journal of luminescence, 2021, 42(2): 136-152.
XIU-XIA YANG, DONG TU. Recent Advances of Near-infrared Mechanoluminescent Materials. [J]. Chinese journal of luminescence, 2021, 42(2): 136-152. DOI: 10.37188/CJL.20200364.
应力发光材料因在应力传感、光学信息存储、生物成像显示、防伪等领域的潜在应用,引起了广大科研工作者的关注。但是,目前已知该材料的发光大多集中在可见光波段范围,这极大地限制了其更广阔的应用;而近红外应力发光材料由于不受明亮环境的干扰以及具有良好的生物组织透过性,逐渐步入科研工作者的视野,成为一类重要的应力发光材料。本文主要综述了近红外应力发光材料的最新研究进展,并对其未来研究方向提出了展望。
Mechanoluminescent(ML) materials have extensively applications in stress sensing
optical information storage
bioimaging display
anti-counterfeiting and other fields. Thus
they have drawn increasing attention of the researchers over the world. Up to now
the development of ML materials has mostly focused on the visible range
which greatly limited the relative applications and development. Near-infrared(NIR) ML materials can avoid the interference of ambient light and have good biological tissue permeability
which gradually attract the attention of researchers and have become an important class of ML materials. This paper mainly discusses on the emission mechanism and current progress of NIR ML materials
and proposes prospects for their future research directions.
应力发光近红外应力传感发光机理
mechanoluminescencenear-infraredstress sensingluminescence mechanism
张中太, 张俊英.无机光致发光材料及应用[M]. 2版.北京:化学工业出版社, 2011.
ZHANG Z T, ZHANG J Y. Inorganic Long Afterglow Luminescence Materials[M]. 2nd ed. Beijing:Chemical Industry Press, 2005. (in Chinese)
HARADA H, TANAKA K.Photoluminescence from Pr3+-doped chalcogenide glasses excited by bandgap light[J].J. Non-Cryst. Solids, 1999, 246(3):189-196.
孙家跃, 肖昂, 杜海燕, 等.稀土光致发光材料的研究现状和应用[J].北京工商大学学报(自然科学版), 2002, 20(4):5-10.
SUN J Y, XIAO A, DU H Y, et al.. Summary of study and application of rare earth phosphor material[J].J. Beijing Technol. Bus. Univ. (Nat. Sci. Ed.), 2002, 20(4):5-10. (in Chinese)
XU C N. Coatings. Encyclopedia of Smart Materials[M]. New York:Wiley, 2002.
YOSHIDA A, LIU L S, TU D, et al.. Mechanoluminescent testing as an efficient inspection technique for the management of infrastructures[J].J. Disast. Res., 2017, 12(3):506-514.
XU C N, WATANABE T, AKIYAMA M, et al.. Artificial skin to sense mechanical stress by visible light emission[J].Appl. Phys. Lett., 1999, 74(9):1236-1238.
XU C N, WATANABE T, AKIYAMA M, et al.. Direct view of stress distribution in solid by mechanoluminescence[J].Appl. Phys. Lett., 1999, 74(17):2414-2416.
TERASAKI N, YAMADA H, XU C N. Ultrasonic wave induced mechanoluminescence and its application for photocatalysis as ubiquitous light source[J].Catal. Today, 2013, 201:203-208.
ZHANG J C, PAN C, ZHU Y F, et al.. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting[J].Adv. Mater., 2018, 30(49):1804644.
WU S Q, LI Y, DING W H, et al.. Recent advances of persistent luminescence nanoparticles in bioapplications[J].Nano-Micro Lett., 2020, 12(1):70-1-26.
NIE J M, LI Y, LIU S S, et al.. Tunable long persistent luminescence in the second near-infrared window via crystal field control[J].Sci. Rep., 2017, 7(1):12392-1-7.
XU J, MURATA D, UEDA J, et al.. Near-infrared long persistent luminescence of Er3+ in garnet for the third bio-imaging window[J].J. Mater. Chem. C, 2016, 4(47):11096-11103.
RAUCH T, BÖBERL M, TEDDE S F, et al.. Near-infrared imaging with quantum-dot-sensitized organic photodiodes[J].Nat. Photonics, 2009, 3(6):332-336.
LIAN W, TU D T, HU P, et al.. Broadband excitable NIR-Ⅱ luminescent nano-bioprobes based on CuInSe2 quantum dots for the detection of circulating tumor cells[J].Nano Today, 2020, 35:100943.
SUN C X, LI B H, ZHAO M Y, et al.. J-aggregates of cyanine dye for NIR-Ⅱ in vivo dynamic vascular imaging beyond 1500 nm[J].J. Am. Chem. Soc., 2019, 141(49):19221-19225.
BÜNZLI J C G, WONG K L. Lanthanide mechanoluminescence[J].J. Rare Earths, 2018, 36(1):1-41.
ZHANG H, WEI Y, HUANG X, et al.. Recent development of elastico-mechanoluminescent phosphors[J].J. Lumin., 2019, 207:137-148.
初振明, 李艳霞, 谢金龙, 等.应力发光材料的研究进展[EB/OL]. (2012-11-27).中国科技论文在线,http://www.paper.edu.cn/releasepaper/content/201211-480http://www.paper.edu.cn/releasepaper/content/201211-480.
CHU Z M, LI Y X, XIE J L, et al.. Research profress of mechanoluminescent materials[EB/OL]. (2012-11-27). Chinese Sciencepaper Online,http://www.paper.edu.cn/releasepaper/content/201211-480http://www.paper.edu.cn/releasepaper/content/201211-480. (in Chinese)
YAMADA H, FU X Y, XU C N. Enhancement of adhesion and triboluminescent properties of SrAl2O4:Eu2+ films fabricated by RF magnetron sputtering and postannealing techniques[J].J. Electrochem. Soc., 2007, 154(11):J348.
BACON S F. The Advancement of Learning [M]. Oxford:Clarendon Press, 2006.
BVNZLI J C G. Lanthanide light for biology and medical diagnosis[J].J. Lumin., 2016, 170:866-878.
XIA Y J, HUANG F Q, WANG W D, et al.. Luminescence properties of Cu-activated BaZnOS phosphor[J].Solid State Sci., 2007, 9(11):1074-1078.
ZHANG H W, YAMADA H, TERASAKI N, et al.. Blue light emission from stress-activated CaYAl3O7:Eu[J].J. Electrochem. Soc., 2008, 155(5):J128.
TU D, XU C N, FUJIO Y, et al.. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu[J].Appl. Phys. Lett., 2014, 105(1):011908-1-4.
VERMA A, VERMA A, PANDA M. Mechano-luminescence studies of nano ZnMgAl10O17:Eu phosphor under UV irradiation[J].AIP Conf. Proc., 2018, 1953(1):030037.
FU X Y, ZHENG S H, SHI J P, et al.. Enhanced blue mechanoluminescence of SrnMgSi2O5+n:Eu alkali-earth silicate induced by defective phase[J].J. Lumin., 2017, 192:117-122.
MATSUI H, XU C N, TATEYAMA H. Stress-stimulated luminescence from ZnAl2O4:Mn[J].Appl. Phys. Lett., 2001, 78(8):1068-1070.
XU C N, YAMADA H, WANG X S, et al.. Strong elasticoluminescence from monoclinic-structure SrAl2O4[J].Appl. Phys. Lett., 2004, 84(16):3040-3042.
ZHANG H W, YAMADA H, TERASAKI N, et al.. Green mechanoluminescence of Ca2MgSi2O7:Eu and Ca2MgSi2O7:Eu, Dy[J].J. Electrochem. Soc., 2007, 155(2):J55-J57.
WANG Y C, SETO T, ISHIGAKI K, et al.. Pressure-driven Eu2+-doped BaLi2Al2Si2N6:a new color tunable narrow-band emission phosphor for spectroscopy and pressure sensor applications[J].Adv. Funct. Mater., 2020, 30(24):2001384.
WANG X D, ZHANG H L, YU R M, et al.. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J].Adv. Mater., 2015, 27(14):2324-2331.
ZHOU Y, YANG Y L, FAN Y T, et al.. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure[J].J. Mater. Chem. C, 2019, 7(26):8070-8078.
LI L J, WONG K L, LI P F, et al.. Mechanoluminescence properties of Mn2+-doped BaZnOS phosphor[J].J. Mater. Chem. C, 2016, 4(35):8166-8170.
ZHANG J C, LONG Y Z, YAN X, et al.. Creating recoverable mechanoluminescence in piezoelectric calcium niobates through Pr3+ doping[J].Chem. Mater., 2016, 28(11):4052-4057.
ZHAO H F, CHAI X N, WANG X S, et al.. Mechanoluminescence in (Sr, Ca, Ba)2SnO4:Sm3+, La3+ ceramics[J].J. Alloys Compd., 2016, 656:94-97.
TU D, XU C N, YOSHIDA A, et al.. LiNbO3:Pr3+:a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence[J].Adv. Mater., 2017, 29(22):1606914-1-4.
TU D, HAMABE R, XU C N. Sustainable mechanoluminescence by designing a novel pinning trap in crystals[J].J. Phys. Chem. C, 2018, 122(41):23307-23311.
DU Y Y, JIANG Y, SUN T Y, et al.. Mechanically excited multicolor luminescence in lanthanide ions[J].Adv. Mater., 2019, 31(7):1807062-1-8.
CHEN H M, WU L W, BO F, et al.. Coexistence of self-reduction from Mn4+ to Mn2+ and elastico-mechanoluminescence in diphase KZn(PO3)3:Mn2+[J].J. Mater. Chem. C, 2019, 7(23):7096-7103.
HYODO K, TERASAWA Y, XU C N, et al.. Mechanoluminescent stress imaging for hard tissue biomechanics[J].J. Biomech., 2012, 45:S263.
TERASAKI N, XU C N, LI C S, et al.. Visualization of active crack on bridge in use by mechanoluminescent sensor[C].Proceedings of SPIE 8348, Health Monitoring of Structural and Biological Systems 2012, San Diego, 2012: 83482D.
JEONG S M, SONG S, LEE S K, et al.. Color manipulation of mechanoluminescence from stress-activated composite films[J].Adv. Mater., 2013, 25(43):6194-6200.
WONG M C, CHEN L, TSANG M K, et al.. Magnetic-induced luminescence from flexible composite laminates by coupling magnetic field to piezophotonic effect[J].Adv. Mater., 2015, 27(30):4488-4495.
MA Z D, ZHOU J Y, ZHANG J C, et al.. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J].Mater. Horiz., 2019, 6(10):2003-2008.
PETIT R R, MICHELS S E, FENG A, et al.. Adding memory to pressure-sensitive phosphors[J].Light Sci. Appl., 2019, 8(1):124-1-10.
ZHUANG Y X, TU D, CHEN C J, et al.. Force-induced charge carrier storage:a new route for stress recording[J].Light Sci. Appl., 2020, 9(1):182-1-9.
TERASAWA Y, XU C N, YAMADA H, et al.. Near infrared mechanoluminescence from strontium aluminate doped with rare-earth ions[J].IOP Conf. Ser.:Mater. Sci. Eng., 2011, 18(21):212013-1-4.
LI L J, WONDRACZEK L, LI L H, et al.. CaZnOS:Nd3+ emits tissue-penetrating near-infrared light upon force loading[J].ACS Appl. Mater. Interfaces, 2018, 10(17):14509-14516.
XIONG P X, PENG M Y, CAO J K, et al.. Near infrared mechanoluminescence from Sr3Sn2O7:Nd3+ for in situ biomechanical sensor and dynamic pressure mapping[J].J. Am. Ceram. Soc., 2019, 102(10):5899-5909.
XIONG P X, PENG M Y. Near infrared mechanoluminescence from the Nd3+ doped perovskite LiNbO3:Nd3+ for stress sensors[J].J. Mater. Chem. C, 2019, 7(21):6301-6307.
XIONG P X, PENG M Y, QIN K X, et al.. Visible to near-infrared persistent luminescence and mechanoluminescence from Pr3+-doped LiGa5O8 for energy storage and bioimaging[J].Adv. Opt. Mater., 2019, 7(24):1901107-1-11.
CHEN C J, ZHUANG Y X, TU D, et al.. Creating visible-to-near-infrared mechanoluminescence in mixed-anion compounds SrZn2S2O and SrZnSO[J].Nano Energy, 2020, 68:104329.
TU D, XU C N, KAMIMURA S, et al.. Ferroelectric Sr3Sn2O7:Nd3+:a new multipiezo material with ultrasensitive and sustainable near-infrared piezoluminescence[J].Adv. Mater., 2020, 32(25):1908083-1-9.
PENG D F, JIANG Y, HUANG B L, et al.. A ZnS/CaZnOS heterojunction for efficient mechanical-to-optical energy conversion by conduction band offset[J].Adv. Mater., 2020, 32(16):1907747-1-7.
ZHOU Z W, ZHANG N M, CHEN J Y, et al.. The Vis-NIR multicolor emitting phosphor Ba4Gd3Na3(PO4)6F2:Eu2+, Pr3+ for LED towards plant growth[J].J. Ind. Eng. Chem., 2018, 65:411-417.
LIANG Y J, LIU F, CHEN Y F, et al.. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors[J].Dalton Trans., 2017, 46(34):11149-11153.
LU K, DUTTA N K. Spectroscopic properties of Nd-doped glass for 944 nm laser emission[J].J. Appl. Phys., 2001, 89(6):3079-3083.
MA Z J, JI H J, TAN D Z, et al.. Porous YAG:Nd3+ fibers with excitation and emission in the human "NIR Optical Window" as luminescent drug carriers[J].Chem. -Eur. J., 2012, 18(9):2609-2616.
ERDEM M, ÖZEN G, TAV C, et al.. Structural and spectroscopic properties of Nd3+:Y2Si2O7 phosphors[J].Ceram. Int., 2013, 39(6):6029-6033.
XIONG P X, PENG M Y. Visible to near-infrared persistent luminescence from Tm3+-doped two-dimensional layered perovskite Sr2SnO4[J].J. Mater. Chem. C, 2019, 7(27):8303-8309.
YU D C, ZHANG J P, CHEN Q J, et al.. Three-photon near-infrared quantum cutting in Tm3+-doped transparent oxyfluoride glass ceramics[J].Appl. Phys. Lett., 2012, 101(17):171108.
YU T, LIN H H, YU D C, et al.. Energy transfer dynamics and quantum yield derivation of the Tm3+ concentration-dependent, three-photon near-infrared quantum cutting in La2BaZnO5[J].J. Phys. Chem. C, 2015, 119(47):26643-26651.
YU D C, HUANG X Y, YE S, et al.. Efficient near-infrared quantum splitting in YVO4:Ho3+ for photovoltaics[J].Sol. Energy Mater. Sol. Cells, 2012, 101:303-307.
XU J, MURATA D, SO B, et al.. 1.2μm persistent luminescence of Ho3+ in LaAlO3 and LaGaO3 perovskites[J].J. Mater. Chem. C, 2018, 6(42):11374-11383.
SAWALA N S, OMANWAR S K. Downconversion from ultra violet to near infer red region in novel Yb3+ doped LiSrVO4 phosphor[J].J. Alloys Compd., 2016, 686:287-291.
LI L, PAN Y, CHANG W X, et al.. Near-infrared downconversion luminescence of SrMoO4:Tm3+, Yb3+ phosphors[J].Mater. Res. Bull., 2017, 93:144-149.
KUMAR A, MANAM J. Optical thermometry using up and down conversion photoluminescence mechanism in Y2Zr2O7:Er3+ phosphors with excellent sensing sensitivity[J].J. Alloys Compd., 2020, 829:154610.
HONG J, LIN L, LI X, et al.. Enhancement of near-infrared quantum-cutting luminescence in NaBaPO4:Er3+ phosphors by Bi3+[J].Opt. Mater., 2019, 98:109471.
LI Z J, ZHANG Y W, WU X, et al.. In vivo repeatedly charging near-infrared-Emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites[J].Adv. Sci., 2015, 2(3):1500001-1-6.
BACK M, TRAVE E, UEDA J, et al.. Ratiometric optical thermometer based on dual near-infrared emission in Cr3+-doped bismuth-based gallate host[J].Chem. Mater., 2016, 28(22):8347-8356.
ZENG H T, ZHOU T L, WANG L, et al.. Two-site occupation for exploring ultra-broadband near-infrared phosphor-double-perovskite La2MgZrO6:Cr3+[J].Chem. Mater., 2019, 31(14):5245-5253.
0
Views
695
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution