Fabrication and Characteristics of MgZnO Ultraviolet Detector Based on Ag Microporous Array Structure Electrode
Device Fabrication and Physics|更新时间:2021-02-08
|
Fabrication and Characteristics of MgZnO Ultraviolet Detector Based on Ag Microporous Array Structure Electrode
Chinese Journal of LuminescenceVol. 42, Issue 2, Pages: 201-207(2021)
作者机构:
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学 材料科学与光电工程研究中心, 北京 100049
作者简介:
基金信息:
National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China;National Natural Science Foundation of China;Open Project of the State Key Laboratory of Luminescence and Applications;Open Project of the State Key Laboratory of Luminescence and Applications;Royal Society, International Exchanges 2017 Cost Share(China)
LI-YAN WANG, KE-WEI LIU, XING CHEN, et al. Fabrication and Characteristics of MgZnO Ultraviolet Detector Based on Ag Microporous Array Structure Electrode. [J]. Chinese journal of luminescence, 2021, 42(2): 201-207.
DOI:
LI-YAN WANG, KE-WEI LIU, XING CHEN, et al. Fabrication and Characteristics of MgZnO Ultraviolet Detector Based on Ag Microporous Array Structure Electrode. [J]. Chinese journal of luminescence, 2021, 42(2): 201-207. DOI: 10.37188/CJL.20200362.
Fabrication and Characteristics of MgZnO Ultraviolet Detector Based on Ag Microporous Array Structure Electrode
The MgZnO film was grown on the sapphire substrate by the metal organic compound chemical vapor deposition(MOCVD) method. Combined with photolithography and polystyrene(PS) microsphere template technology
the MgZnO ultraviolet detector based on the Ag microporous array electrode structure was fabricated.Compared with devices based on conventional metal film electrodes
the photocurrent of the MgZnO ultraviolet detector based on the microporous array interdigital electrode is increased by nearly 6 times
while its dark current and response time remain basically unchanged. Through the characterization of ultraviolet-visible transmission spectra and electrical properties
the mechanism of the influence of the microporous array structure Ag electrode on the UV photodetection performance of the MgZnO film was discussed. This study provides a feasible way to prepare high-performance UV detectors.
CHEN H, MA X Z, ZHANG J T, et al.. Avalanche solar blind photodetectors with high responsivity based on MgO/MgZnO heterostructures[J].Opt. Mater. Express, 2018, 8(4):785-793.
ZHENG J, QIAO Q, ZHANG Z Z, et al.. Cubic MgZnO deep-ultraviolet photodetector with high responsivity[J].Chin. J. Lumin., 2014, 35(11):1291-1296. (in Chinese)
NING Y, ZHANG Z M, TENG F, et al.. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction[J].Small, 2018, 14(13):1703754-1-9.
SHI L, NIHTIANOV S. Comparative study of silicon-based ultraviolet photodetectors[J].IEEE Sens. J., 2012, 12(7):2453-2459.
TAO X T, MU W X, JIA Z T.Research progress in the crystal growth and devices of wide-bandgap β-Ga2O3[J].Mater. China, 2020, 39(2):113-123. (in Chinese)
ZHUO R R, ZENG L H, YUAN H Y, et al.. In-situ fabrication of PtSe2/GaN heterojunction for self-powered deep ultraviolet photodetector with ultrahigh current on/off ratio and detectivity[J].Nano Res., 2019, 12(1):183-189.
BOSCARINO S, FILICE S, SCIUTO A, et al.. Investigation of ZnO-decorated CNTs for UV light detection applications[J].Nanomaterials, 2019, 9(8):1099-1-12.
JOIKE K, HAMA K, NAKASHIMA I,et al.. Molecular beam epitaxial growth of wide bandgap ZnMgO alloy films on (111)-oriented Si substrate toward UV-detector applications[J].J. Cryst. Growth, 2005, 278(1-4):288-292.
WANG L Y, XIE J C, LIN B X, et al.. Study on n-ZnO/p-Si heterojunction UV enhanced photoelectric detectors[J].Electron. Comp. Mater., 2004, 23(1):42-44. (in Chinese)
WANG J, CHEN R S, XIANG L, et al.. Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies:a review[J].Ceram. Int., 2018, 44(7):7357-7377.
HAN S, LIU S M, LU Y M, et al.. High performance solar-blind ultraviolet photo detector based on mixed-phase MgZnO thin film with different interfaces deposited by PLD method[J].J. Alloys Compds., 2017, 694:168-174.
RANA V S, RAJPUT J K, PATHAK T K, et al.. Multilayer MgZnO/ZnO thin films for UV photodetectors[J].J. Alloys Compds., 2018, 764:724-729.
YANG J L, LIU K W, SHEN D Z. Recent progress of ZnMgO ultraviolet photodetector[J].Chin. Phys. B, 2017, 26(4):047308-1-9.
MOON T H, JEONG M C, LEE W, et al.. The fabrication and characterization of ZnO UV detector[J].Appl. Surf. Sci., 2005, 240(1-4):280-285.
HAN S, ZHANG Z Z, ZHANG J Y, et al.. Photoconductive gain in solar-blind ultraviolet photodetector based on Mg0.52Zn0.48O thin film[J].Appl. Phys. Lett., 2011, 99(24):242105-1-4.
ZHU Y X, LIU K W, WANG X, et al.. Performance improvement of a ZnMgO ultraviolet detector by chemical treatment with hydrogen peroxide[J].J. Mater. Chem. C, 2017, 5(30):7598-7603.
HWANG J D, LIN G S. Single- and dual-wavelength photodetectors with MgZnO/ZnO metal-semiconductor-metal structure by varying the bias voltage[J].Nanotechnology, 2016, 27(37):375502.
SHENG H Y, ZHANG X T, MA Y L, et al.. Ultrathin, wrinkled, vertically aligned Co(OH)2 nanosheets/Ag nanowires hybrid network for flexible transparent supercapacitor with high performance[J].ACS Appl. Mater. Interfaces, 2019, 11(9):8992-9001.
YI F S, BI Y G, ZHANG X L, et al.. Highly flexible and mechanically robust ultrathin Au grid as electrodes for flexible organic light-emitting devices[J].IEEE Trans. Nanotechnol., 2019, 18:776-780.
FANG H J, ZHENG C, WU L L, et al.. Solution-processed self-powered transparent ultraviolet photodetectors with ultrafast response speed for high-performance communication system[J].Adv. Funct. Mater., 2019, 29(20):1809013-1-10.
HECHT D S, HU L B, IRVIN G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures[J].Adv. Mater., 2011, 23(13):1482-1513.
EBBESEN T W, LEZEC H J, GHAEMI H F, et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature, 1998, 391(6668):667-669.
KE Y J, WEN X L, ZHAO D Y, et al.. Controllable fabrication of two-dimensional patterned VO2 nanoparticle, nanodome, and nanonet arrays with tunable temperature-dependent localized surface plasmon resonance[J].ACS Nano, 2017, 11(7):7542-7551.
LOTITO V, ZAMBELLI T. Approaches to self-assembly of colloidal monolayers:a guide for nanotechnologists[J].Adv. Colloid Interface Sci., 2017, 246:217-274.
LIANG X G, DONG R T, HO J C. Self-assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications[J].Adv. Mater. Technol., 2019, 4(3):1800541-1-19.
ZHOU C Q, AI Q, CHEN X, et al.. Ultraviolet photodetectors based on wide bandgap oxide semiconductor films[J].Chin. Phys. B, 2019, 28(4):048503.
WANG Y S, CHEN N F, ZHANG X W, et al.. Ag surface plasmon enhanced double-layer antireflection coatings for GaAs solar cells[J].J. Semicond., 2009, 30(7):072005-1-5.
HU L B, KIM H S, LEE J Y, et al.. Scalable coating and properties of transparent, flexible, silver nanowire electrodes[J].ACS Nano, 2010, 4(5):2955-2963.
GHAEMI H F, THIO T, GRUPP D E, et al.. Surface plasmons enhance optical transmission through subwavelength holes[J].Phys. Rev. B, 1998, 58(11):6779-6782.