National Natural Science Foundation of China;Natural Science Foundation of Jiangsu Province;Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing Electronic Devices Institute
Yi TAN, Wing-cheung CHONG, Zi-yuan LU, et al. InGaN-based Lateral-structured Micro-LED Array Fabricated by Ion Implantation. [J]. Chinese Journal of Luminescence 42(2):215-222(2021)
DOI:
Yi TAN, Wing-cheung CHONG, Zi-yuan LU, et al. InGaN-based Lateral-structured Micro-LED Array Fabricated by Ion Implantation. [J]. Chinese Journal of Luminescence 42(2):215-222(2021) DOI: 10.37188/CJL.20200355.
InGaN-based Lateral-structured Micro-LED Array Fabricated by Ion Implantation
an ion implantation process is used to form a high-resistance isolation region on the p-GaN layer of the InGaN/GaN quantum well blue LED structure. This method has been used to realize the preparation of ultra-small size and high luminous efficiency Micro-LED arrays with a minimum size of 4 μm. The electrical and optical properties of lateral structure Micro-LED arrays prepared by fluoride ion implantation isolation process are systematically studied. Experimental results show that higher fluoride ion implantation energy can improve opticlal and electrical isolation between Miro-LEDs. When the ion implantation energy is 60 keV
the Micro-LED array has the relatively best photoelectric effect. And the 4 μm ultra-small size Micro-LED array prepared based on this ion implantation energy has an optical power density of up to 200 W/cm
2
demonstrating the application potential of ion implantation technology in a new generation of Micro-LED based micro-display chips.
关键词
蓝光Micro-LED离子注入隔离氮化镓横向结构高光功率密度
Keywords
blue micro-LEDion implantation isolationGaNlateral structurehigh optical power density
references
CHEN C J, CHEN H C, LIAO J H,et al.. Fabrication and characterization of active-matrix 960×540 blue GaN-Based micro-LED display[J].IEEE J. Quantum Electron., 2019, 55(2):3300106-1-6.
DAY J, LI J, LIE D Y, et al.. Ⅲ- nitride full-scale high-resolution microdisplays[J].Appl. Phys. Lett., 2011, 99(3):031116-1-3.
HAN H V, LIN H Y, LIN C C, et al.. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology[J].Opt. Express, 2015, 23(25):32504-32515.
CHONG W C, CHO W K, LIU Z J, et al.. 1700 pixels per inch(PPI) passive-matrix micro-LED display powered by ASIC[C].Proceedings of 2014IEEE Compound Semiconductor Integrated Circuit Symposium, La Jolla, 2014: 1-4.
WU T Z, SHER C W, LIN Y, et al.. Mini-LED and micro-LED:promising candidates for the next generation display technology[J].Appl. Sci., 2018, 8(9):1557-1-17.
MEI S L, LIU X Y, ZHANG W L, et al.. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication[J].ACS Appl. Mater. Interfaces, 2018, 10(6):5641-5648.
WASISTO H S, PRADES J D, GVLINK J, et al.. Beyond solid-state lighting:miniaturization, hybrid integration, and applications of GaN nano-and micro-LEDs[J].Appl. Phys. Rev., 2019, 6(4):041315-1-40.
HORNG R H, CHIEN H Y, TARNTAIR F G, et al.. Fabrication and study on red light micro-LED displays[J].IEEE J. Electron Devices Soc., 2018, 6:1064-1069.
HUANG Y G, TAN G J, GOU F W, et al.. Prospects and challenges of mini-LED and micro-LED displays[J].J. Soc. Inf. Disp., 2019, 27(7):387-401.
HUANG Y G, HSIANG E L, DENG M Y, et al.. Mini-LED, micro-LED and OLED displays:present status and future perspectives[J].Light Sci. Appl., 2020, 9(1):105-1-16.
DAAMI A, OLIVIER F, DUPRÉ L, et al.. 59-4:Invited Paper:electro-optical size-dependence investigation in GaN micro-LED devices[J].SID Symp. Dig. Tech. Pap., 2018, 49(1):790-793.
ZHU J, TAKAHASHI T, OHORI D, et al.. Near-complete elimination of size-dependent efficiency decrease in GaN micro-light-emitting diodes[J].Phys. Status Solidi A, 2019, 216(22):1900380-1-6.
LIN H Y, SHER C W, HSIEH D H, et al.. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold[J].Photonics Res., 2017, 5(5):411-416.
HIGO A, KIBA T, TAMURA Y, et al.. Light-emitting devices based on top-down fabricated GaAs quantum nanodisks[J].Sci. Rep., 2015, 5:9371-1-8.
SAMUKAWA S. A neutral beam process for controlling surface defect generation and chemical reactions at the atomic layer[J].ECS J. Solid State Sci. Technol., 2015, 4(6):N5089-N5094.
WANG M J, CHEN K J. Improvement of the off-state breakdown voltage with fluorine ion implantation in AlGaN/GaN HEMTs[J].IEEE Trans. Electron Devices, 2011, 58(2):460-465.
XU F, GAO C H, FAN Y M, et al.. Enhanced performance of vertical-structured InGaN micro-pixelated light-emitting-diode array fabricated using an ion implantation process[J].Opt. Lett., 2019, 44(18):4562-4565.
GUO W L, TAI J P, LIU J P, et al.. Process optimization of passive matrix GaN-based micro-LED arrays for display applications[J].J. Electron. Mater., 2019, 48(8):5195-5201.
刘洪楷.采用离子注入工艺制造平面型LED[J].光机电信息, 2000, 17(4):21-22.
LIU H K. Using ion implantation process to manufacture planar LED[J].OME Inf., 2000, 17(4):21-22. (in Chinese)
LIN S X, MENG D, WEN C P, et al.. Analysis on the CTLM and LTLM applicability for GaN HEMTs structure alloyed ohmic contact resistance evaluation[C].Proceedings of 2013IEEE International Conference of Electron Devices and Solid-state Circuits, Hong Kong, China, 2013: 1-2.
OLIVIER F, DAAMI A, LICITRA C, et al.. Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs:a size effect study[J].Appl. Phys. Lett., 2017, 111(2):022104.