浏览全部资源
扫码关注微信
1.天津大学-新加坡国立大学福州联合学院 天津大学福州国际校区, 福建 福州 350207;
2.天津大学 分子聚集态科学研究院, 天津 300072;
3.武汉大学 化学与分子科学学院, 湖北 武汉 430072
Published:01 March 2021,
Received:22 November 2020,
Revised:24 January 2021,
移动端阅览
AI-SEN LI, JIN-FENG WANG, ZHEN LI. Molecular Stacking—Key Factor in Mechanical-responsive Luminescent Behaviors of Solid Organic Small Molecules. [J]. Chinese journal of luminescence, 2021, 42(3): 283-295.
AI-SEN LI, JIN-FENG WANG, ZHEN LI. Molecular Stacking—Key Factor in Mechanical-responsive Luminescent Behaviors of Solid Organic Small Molecules. [J]. Chinese journal of luminescence, 2021, 42(3): 283-295. DOI: 10.37188/CJL.20200354.
力刺激响应型有机发光小分子因其独特的发光性质在信息加密、光学存储、压力传感器等领域具有潜在应用,引起了广泛关注。其相关发光特性并不只来源于单分子结构,更与分子聚集态不同的堆积模式密切相关,因此,如何调控分子堆积模式是获得功能化发光材料的关键。本文主要从力致变色和力致发光材料体系出发,概述了几种调控分子间相互作用的策略,突出强调了分子堆积与发光性能之间的关系,为研究具有新颖发光特性的发光材料提供了研究思路,希望促进有机发光材料的进一步发展。
Mechanical-responsive organic luminogens have potential applications in the fields of information encryption
optical storage
pressure sensors
etc
. due to their unique luminescent properties
and have attracted widespread attention. Their luminescent properties are not only derived from the single-molecule structure
but also closely related to the different stacking modes of molecular aggregates. Therefore
how to control the molecular stacking mode becomes a key issue for obtaining functional luminescent materials. This review mainly focuses on the material system of mechanochromism and mechanoluminescence
outlines several strategies to regulate the intermolecular interactions
and highlights the relationship between molecular stacking and luminescent performance
which paves a new way to design novel luminescence materials and further promotes the development of organic luminescent materials.
外力力致变色力致发光分子堆积分子间相互作用
external forcemechanochromismmechanoluminescencemolecular stackingintermolecular interactions
YANG J, ZHEN X, WANG B, et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens [J].Nat. Commun., 2018,9(1):840-1-10.
YANG J, CHI Z G, ZHU W H, et al. Aggregation-induced emission:a coming-of-age ceremony at the age of eighteen [J].Sci. China Chem., 2019,62(9):1090-1098.
LI Q Q, LI Z. The strong light-emission materials in the aggregated state:what happens from a single molecule to the collective group [J].Adv. Sci., 2017,4(7):1600484-1-15.
FANG M M, YANG J, LI Z. Recent advances in purely organic room temperature phosphorescence polymer [J].Chin. J. Polym. Sci., 2019,37(4):383-393.
KESHAV K, KUMAWAT M K, SRIVASTAVA R, et al. Benzothiazoles-substituted tetraphenylethylenes:synthesis,structure,aggregation-induced emission and biological studies [J].Mater. Chem. Front., 2017,1(6):1207-1216.
YANG J, FANG M M, LI Z. Organic luminescent materials:the concentration on aggregates from aggregation-induced emission [J].Aggregate, 2020,1(1):6-18.
LI Q Q, LI Z. Molecular packing:another key point for the performance of organic and polymeric optoelectronic materials [J].Acc. Chem. Res., 2020,53(4):962-973.
ZHANG H Y, ZHANG Z L, YE K Q, et al. Organic crystals with tunable emission colors based on a single organic molecule and different molecular packing structures [J].Adv. Mater., 2006,18(18):2369-2372.
YANG J, FANG M M, LI Z. Stimulus-responsive room temperature phosphorescence in purely organic luminogens [J].InfoMat, 2020,2(5):791-806.
XIE Y J, LI Z. Triboluminescence:recalling interest and new aspects [J].Chem, 2018,4(5):943-971.
XIE Y J, LI Z. The development of mechanoluminescence from organic compounds:breakthrough and deep insight [J].Mater. Chem. Front., 2020,4(2):317-331.
SCHÖNBERG A, FATEEN A E K, SAMMOUR A E M A. Organic sulfur compounds. ⅩⅩⅩⅣ. synthesis of ethylenes and ethylene sulfides by action of diazoalkanes on thioketones [J].J. Am. Chem. Soc., 1957,79(22):6020-6023.
BOUAS-LAURENT H, DÜRR H. Organic photochromism (IUPAC technical report) [J].Pure Appl. Chem., 2001,73(4):639-665.
WANG J, MEI J, HU R R, et al. Click synthesis,aggregation-induced emission,E/Z isomerization,self-organization,and multiple chromisms of pure stereoisomers of a tetraphenylethene-cored luminogen [J].J. Am. Chem. Soc., 2012,134(24):9956-9966.
QI Q K, QIAN J Y, TAN X, et al. Remarkable turn-on and color-tuned piezochromic luminescence:mechanically switching intramolecular charge transfer in molecular crystals [J].Adv. Funct. Mater., 2015,25(26):4005-4010.
GONG Y B, HE S Y, LI Y G, et al. Partially controlling molecular packing to achieve off-on mechanochromism through ingenious molecular design [J].Adv. Opt. Mater., 2020,8(8):1902036.
ZHANG Z L, YAO D D, ZHOU T L, et al. Reversible piezo- and photochromic behaviors accompanied by emission color switching of two anthracene-containing organic molecules [J].Chem. Commun., 2011,47(27):7782-7784.
DONG Y J, XU B, ZHANG J B, et al. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl) anthracene [J].Angew. Chem. Int. Ed., 2012,51(43):10782-10785.
NAGURA K, SAITO S, YUSA H, et al. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene [J].J. Am. Chem. Soc., 2013,135(28):10322-10325.
YUAN H S, WANG K, YANG K, et al. Luminescence properties of compressed tetraphenylethene:the role of intermolecular interactions [J].J. Phys. Chem. Lett., 2014,5(17):2968-2973.
LI N, GU Y R, CHEN Y P, et al. Pressure-induced emission enhancement and piezochromism of triphenylethylene [J].J. Phys. Chem. C, 2019,123(11):6763-6767.
GU Y R, WANG K, DAI Y X, et al. Pressure-induced emission enhancement of carbazole:the restriction of intramolecular vibration [J].J. Phys. Chem. Lett., 2017,8(17):4191-4196.
GU Y R, LIU H C, QIU R, et al. Pressure-induced emission enhancement and multicolor emission for 1,2,3,4-tetraphenyl-1,3-cyclopentadiene:controlled structure evolution [J].J. Phys. Chem. Lett., 2019,10(18):5557-5562.
ZINK J I. Triboluminescence [J].Acc. Chem. Res., 1978,11(8):289-295.
WANG C, XU B J, LI M S, et al. A stable tetraphenylethene derivative:aggregation-induced emission,different crystalline polymorphs,and totally different mechanoluminescence properties [J].Mater. Horiz., 2016,3(3):220-225.
WANG J F, CHAI Z F, WANG J Q, et al. Mechanoluminescence or room-temperature phosphorescence:molecular packing-dependent emission response [J].Angew. Chem. Int. Ed., 2019,58(48):17297-17302.
XIE Z L, YU T, CHEN J R, et al. Weak interactions but potent effect:tunable mechanoluminescence by adjusting intermolecular C—H…π interactions [J].Chem. Sci., 2018,9(26):5787-5794.
XU B J, LI W L, HE J J, et al. Achieving very bright mechanoluminescence from purely organic luminophores with aggregation-induced emission by crystal design [J].Chem. Sci., 2016,7(8):5307-5312.
WANG C, YU Y, YUAN Y Y, et al. Heartbeat-sensing mechanoluminescent device based on a quantitative relationship between pressure and emissive intensity [J].Matter, 2020,2(1):181-193.
TU J, FAN Y H, WANG J Q, et al. Halogen-substituted triphenylamine derivatives with intense mechanoluminescence properties [J].J. Mater. Chem. C, 2019,7(39):12256-12262.
WANG J Q, WANG C, GONG Y B, et al. Bromine-substituted fluorene:molecular structure,Br-Br interactions,room-temperature phosphorescence,and tricolor triboluminescence [J].Angew. Chem. Int. Ed., 2018,130(51):17063-17068.
GONG Y B, ZHANG P, GU Y R, et al. The influence of molecular packing on the emissive behavior of pyrene derivatives:mechanoluminescence and mechanochromism [J].Adv. Opt. Mater., 2018,6(16):1800198.
JIANG Y Q, WANG J Q, HUANG G X, et al. Insight from the old:mechanochromism and mechanoluminescence of two amine-containing tetraphenylethylene isomers [J].J. Mater. Chem. C, 2019,7(38):11790-11796.
0
Views
844
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution