浏览全部资源
扫码关注微信
1.北京大学 化学与分子工程学院, 稀土材料化学及应用国家重点实验室, 北京大学-香港大学稀土材料与生物无机化学联合实验室, 北京分子科学中心, 北京 100871
2.兰州大学 化学化工学院, 甘肃 兰州 730000
Published:2020-12,
Received:30 October 2020,
Accepted:2020-11-18
移动端阅览
LING HUANG, HAO DONG, FENG-YAN JIA, et al. Recent Advances on Amplified Stimulated Emission of Lead Halide Perovskite Micro/Nanostructures. [J]. Chinese journal of luminescence, 2020, 41(12): 1479-1489.
LING HUANG, HAO DONG, FENG-YAN JIA, et al. Recent Advances on Amplified Stimulated Emission of Lead Halide Perovskite Micro/Nanostructures. [J]. Chinese journal of luminescence, 2020, 41(12): 1479-1489. DOI: 10.37188/CJL.20200353.
铅卤钙钛矿结构具有吸光系数大、发光量子产率高、带隙可调及发射峰窄的特点,在太阳能电池、发光二极管及受激辐射等领域的研究备受关注。本文介绍了铅卤钙钛矿作为增益介质的受激辐射研究进展,对已报道的纳米晶、微米晶及薄膜的受激辐射性能进行了比较,讨论了晶体维度、泵浦条件等对受激辐射的阈值、模式的影响。针对激光器件小型化以及芯片光互联、超灵敏检测等发展趋势和需求,对该领域的机遇与挑战进行了展望。
Lead halide perovskite micro/nanostructures have been regarded as prospective optoelectronic materials in light-emitting diodes(LEDs)
lasers and other optoelectronic devices due to their large absorption coefficient
high photoluminescence quantum yield
tunable bandgap
and narrow emission bandwidth. Herein
we review the advances on light amplified stimulated emission of lead halide perovskite micro/nanostructures and thin films. The influences of crystal dimensions and pumping modes on lasing performances
including the threshold and lasing modes are discussed. The lasing emissions based on perovskite materials are also introduced
and the outlook toward challenges and future prospects of the applications are discussed.
铅卤钙钛矿受激辐射微纳结构激光阈值
lead halide perovskiteamplified stimulated emissionnano/microstructurethreshold
AKKERMAN Q A, RAINO G, KOVALENKO M V, et al.. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J].Nat. Mater., 2018, 17(5):394-405.
VELDHUIS S A, BOIX P P, YANTARA N, et al.. Perovskite materials for light-emitting diodes and lasers[J].Adv. Mater., 2016, 28(31):6804-6834.
XING G C, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J].Nat. Mater., 2014, 13(5):476-480.
HEO J H, IM S H, NOH J H,et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors[J].Nat. Photonics, 2013, 7(6):486-491.
PARK N G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell[J].J. Phys. Chem. Lett., 2013, 4(15):2423-2429.
SNAITH H J. Perovskites:the emergence of a new era for low-cost, high-efficiency solar cells[J].J. Phys. Chem. Lett., 2013, 4(21):3623-3630.
NOH J H, IM S H, HEO J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J].Nano Lett., 2013, 13(4):1764-1769.
YAKUNIN S, PROTESESCU L, KRIEG F,et al.. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J].Nat. Commun., 2015, 6(1):8056-1-8.
ZHANG Q, SU R, DU W N, et al.. Advances in small perovskite-based lasers[J].Small Meth., 2017, 1(9):1700163-1-12.
DHANKER R, BRIGEMAN A N, LARSEN A V, et al.. Random lasing in organo-lead halide perovskite microcrystal networks[J].Appl. Phys. Lett., 2014, 105(15):151112-1-5.
LIU S, SUN W Z, LI J K, et al.. Random lasing actions in self-assembled perovskite nanoparticles[J].Opt. Eng., 2016, 55(5):057102.
WANG Y C, LI H, HONG Y H, et al.. Flexible organometal-halide perovskite lasers for speckle reduction in imaging projection[J].ACS Nano, 2019, 13(5):5421-5429.
YUAN F, WU Z X, DONG H, et al.. High stability and ultralow threshold amplified spontaneous emission from formamidinium lead halide perovskite films[J].J. Phys. Chem. C, 2017, 121(28):15318-15325.
DESCHLER F, PRICE M, PATHAK S, et al.. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors[J].J. Phys. Chem. Lett., 2014, 5(8):1421-1426.
HUANG C Y, ZOU C, MAO C Y, et al.. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability[J].ACS Photonics, 2017, 4(9):2281-2289.
POURDAVOUD N, HAEGER T, MAYER A, et al.. Room-temperature stimulated emission and lasing in recrystallized cesium lead bromide perovskite thin films[J].Adv. Mater., 2019, 31(39):1903717-1-10.
SUTHERLAND B R, HOOGLAND S, ADACHI M M, et al.. Conformal organohalide perovskites enable lasing on spherical resonators[J].ACS Nano, 2014, 8(10):10947-10952.
SALIBA M, WOOD S M, PATEL J B, et al.. Structured organic-inorganic perovskite toward a distributed feedback laser[J].Adv. Mater., 2016, 28(5):923-929.
LI M L, GAO Q G, LIU P, et al.. Amplified spontaneous emission based on 2D ruddlesden-popper perovskites[J].Adv. Funct. Mater., 2018, 28(17):1707006-1-9.
ZHANG H H, LIAO Q, WU Y S, et al.. 2D ruddlesden-popper perovskites microring laser array[J].Adv. Mater., 2018, 30(15):1706186-1-8.
LEI L, SEYITLIYEV D, STUARD S, et al.. Efficient energy funneling in quasi-2D perovskites:from light emission to lasing[J].Adv. Mater., 2020, 32(16):1906571.
ZHU H M, FU Y P, MENG F, et al.. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors[J].Nat. Mater., 2015, 14(6):636-642.
HUANG L, GAO Q G, SUN L D et al.. Composition-graded cesium lead halide perovskite nanowires with tunable dual-color lasing performance[J].Adv. Mater., 2018, 30(27):1800596-1-6.
ZHANG Q, SU R, LIU X F, et al.. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets[J].Adv. Funct. Mater., 2016, 26(34):6238-6245.
ZHANG Q, HA S T, LIU X F, et al.. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers[J].Nano Lett., 2014, 14(10):5995-6001.
TANG B, DONG H X, SUN L X, et al.. Single-mode lasers based on cesium lead halide perovskite submicron spheres[J].ACS Nano, 2017, 11(11):10681-10688.
LIU P, HE X X, REN J H, et al.. Organic-inorganic hybrid perovskite nanowire laser arrays[J].ACS Nano, 2017, 11(6):5766-5733.
HE X X, LIU P, ZHANG H H, et al.. Patterning multicolored microdisk laser arrays of cesium lead halide perovskite[J].Adv. Mater., 2017, 29(12):1604510-1-7.
CADELANO M, SARRITZU V, SESTU N, et al.. Can trihalide lead perovskites support continuous wave lasing[J].Adv. Opt. Mater., 2015, 3(11):1557-1564.
JIA Y F, KERNER R A, GREDE A J, et al.. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator[J].Nano Lett., 2016, 16(7):4624-4629.
JIA Y F, KERNER R A, GREDE A J, et al.. Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor[J].Nat. Photonics, 2017, 11(12):784-788.
GHARAJEH A, HAROLDSON R, LI Z T, et al.. Continuous-wave operation in directly patterned perovskite distributed feedback light source at room temperature[J].Opt. Lett., 2018, 43(3):611-614.
EVANS T J S, SCHLAUS A, FU Y P, et al.. Continuous-wave lasing in cesium lead bromide perovskite nanowires[J].Adv. Opt. Mater., 2018, 6(2):1700982-1-7.
JIANG L, LIU R M, SU R L, et al.. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield[J].Nanoscale, 2018, 10(28):13565-13571.
WALTERS G, SUTHERLAND B R, HOOGLAND S, et al.. Two-photon absorption in organometallic bromide perovskites[J].ACS Nano, 2015, 9(9):9340-9346.
GU Z Y, WANG K Y, SUN W Z, et al.. Two-photon pumped CH3NH3PbBr3 perovskite microwire lasers[J].Adv. Opt. Mater., 2016, 4(3):472-479.
WANG Y, LI X M, ZHAO X, et al.. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals[J].Nano Lett., 2016, 16(1):448-453.
XU Y Q, CHEN Q, ZHANG C F, et al.. Two-photon-pumped perovskite semiconductor nanocrystal lasers[J].J. Am. Chem. Soc., 2016, 138(11):3761-3768.
YANG D C, XIE C, SUN J H, et al.. Amplified spontaneous emission from organic-inorganic hybrid lead iodide perovskite single crystals under direct multiphoton excitation[J].Adv. Opt. Mater., 2016, 4(7):1053-1059.
GAO Y S, WANG S, HUANG C, et al.. Room temperature three-photon pumped CH3NH3PbBr3 perovskite microlasers[J].Sci. Rep., 2017, 7:45391-1-6.
WANG X X, ZHOU H, YUAN S P, et al.. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing[J].Nano Res., 2017, 10(10):3385-3395.
CHEN L J, DAI J H, LIN J D, et al.. Wavelength-tunable and highly stable perovskite-quantum-dot-doped lasers with liquid crystal lasing cavities[J].ACS Appl. Mater. Interfaces, 2018, 10(39):33307-33315.
0
Views
324
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution