浏览全部资源
扫码关注微信
1.暨南大学 化学与材料学院, 广东 广州 510632;
2.华南理工大学 发光材料与器件国家重点实验室, 广东省分子聚集发光重点实验室,华南理工大学-香港科技大学联合研究院, 广东 广州 510640;
3.香港科技大学 化学系, 人体组织功能重建国家工程技术研究中心香港分中心, 中国 香港 999077
Published:01 March 2021,
Received:15 November 2020,
Revised:05 December 2020,
移动端阅览
JIA-QI PENG, MING CHEN, AN-JUN QIN, et al. Progress on Aggregation-induced Emission Probes for Mitochondria Target and Cancer Cell Identification. [J]. Chinese journal of luminescence, 2021, 42(3): 348-360.
JIA-QI PENG, MING CHEN, AN-JUN QIN, et al. Progress on Aggregation-induced Emission Probes for Mitochondria Target and Cancer Cell Identification. [J]. Chinese journal of luminescence, 2021, 42(3): 348-360. DOI: 10.37188/CJL.20200351.
聚集诱导发光(Aggregation-induced emission,AIE)探针由于其极高的灵敏度和极佳的光稳定性在癌症诊断和治疗等方面具有不可估量的应用前景。线粒体作为所有细胞共有的重要细胞器,在癌细胞和正常细胞中显示出明显的性质区别,因此可作为线粒体靶向AIE探针区分癌细胞与正常细胞的靶标。本文介绍了线粒体靶向AIE探针的设计方法、成像机理以及它们对癌细胞与正常细胞、循环肿瘤细胞与白细胞以及癌细胞和相关细菌与正常细胞的区别成像。这些荧光探针在癌症诊断、手术导航、癌症治疗的效果评估和后续复发监测以及细胞污染评估等方面具有广阔的应用前景。通过本文的介绍,能够让更多读者了解AIE探针在癌细胞识别方面的显著优势,激发开发性能更为丰富的探针材料和开展更为深入的研究,从而促进生物医学领域的快速发展,造福人类。
Aggregation-induced emission(AIE) probes have shown great potential in cancer diagnosis and therapy due to their excellent sensitivity and photo-stability. Mitochondria
which is regarded as one of the most important organelles in cells
has obvious difference between cancer cells and normal cells. Thus
it is reliable to utilize mitochondria-targeted AIE probes to distinguish cancer from normal cells. In this review
we exhibit the design principle and imaging mechanism of AIE probes for mitochondria target
and their distinguishing imaging between cancer cells and normal cells
circulating tumor cells and leukocyte
and dual identification imaging of cancer cells and related bacteria. The probes show remarkable advantages in cancer diagnosis
surgical navigation
cancer treatment assessment and recurrence monitoring
and cell pollution evaluation. We hope
this review will motivate to develop more AIE probes with rich properties and conduct deeper researches to promote the rapid development of biomedical field and maintain human health.
聚集诱导发光荧光探针线粒体成像癌细胞识别
aggregation-induced emissionfluorescent probesmitochondria targetcancer cell identification
WEINBERG R A. How cancer arises [J].Sci. Am., 1996,275(3):62-70.
BOHUNICKY B, MOUSA S A. Biosensors: the new wave in cancer diagnosis [J].Nanotechnol. Sci. Appl., 2010,4:1-10.
MENG X Q, LI W J, SUN Z H, et al. Tumor-targeted small molecule for dual-modal imaging-guided phototherapy upon near-infrared excitation [J].J. Mater. Chem. B, 2017,5(47):9405-9411.
MENG X Q, ZHANG J L, SUN Z H, et al. Hypoxia-triggered single molecule probe for high-contrast NIR Ⅱ/PA tumor imaging and robust photothermal therapy [J].Theranostics, 2018,8(21):6025-6234.
YAO D F, YANG S Y, WANG Y S, et al. An ALP-activatable and mitochondria-targeted probe for prostate cancer-specific bimodal imaging and aggregation-enhanced photothermal therapy [J].Nanoscale, 2019,11(13):6307-6314.
ZHEN X, ZHANG J J, HUANG J G, et al. Macrotheranostic probe with disease-activated near-infrared fluorescence,photoacoustic,and photothermal signals for imaging-guided therapy [J].Angew. Chem. Int. Ed., 2018,57(26):7804-7808.
NURIYA M, FUKUSHIMA S, MOMOTAKE A, et al. Multimodal two-photon imaging using a second harmonic generation-specific dye [J].Nat. Commun., 2016,7:11557-1-10.
GROSSI M, MORGUNOVA M, CHEUNG S, et al. Lysosome triggered near-infrared fluorescence imaging of cellular trafficking processes in real time [J].Nat. Commun., 2016,7:10855-1-13.
ZHENG X C, WANG X, MAO H, et al. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo[J].Nat. Commun., 2015,6:5834-1-12.
ZHANG J J, NING L L, HUANG J G, et al. Activatable molecular agents for cancer theranostics [J].Chem. Sci., 2020,11(3):618-630.
MA X F, SUN R, CHENG J H, et al. Fluorescence aggregation-caused quenching versus aggregation-induced emission:a visual teaching technology for undergraduate chemistry students [J].J. Chem. Educ., 2016,93(2):345-350.
LUO J D, XIE Z L, LAM J W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole [J].Chem. Commun., 2001,(18):1740-1741.
CHEN M, CHEN R, SHI Y, et al. Malonitrile-functionalized tetraphenylpyrazine:aggregation-induced emission,ratiometric detection of hydrogen sulfide,and mechanochromism [J].Adv. Funct. Mater., 2018,28(6):1704689-1-10.
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission:together we shine,united we soar! [J].Chem. Rev., 2015,115(21):11718-11940.
CHEN M, LIU J K, LIU F, et al. Tailoring the molecular properties with isomerism effect of AIEgens [J].Adv. Funct. Mater., 2019,29(37):1903834-1-12.
CHEN M, HU X L, LIU J K, et al. Rational design of red AIEgens with a new core structure from non-emissive heteroaromatics [J].Chem. Sci., 2018,9(40):7829-7834.
QIN W, ALIFU N, LAM J W Y, et al. Facile synthesis of efficient luminogens with AIE features for three-photon fluorescence imaging of the brain through the intact skull [J].Adv. Mater., 2020,32(23):2000364-1-10.
HAN K, WANG S B, LEI Q, et al. Ratiometric biosensor for aggregation-induced emission-guided precise photodynamic therapy [J].ACS Nano, 2015,9(10):10268-10277.
JIANG M J, GU X G, LAM J W Y, et al. Two-photon AIE bio-probe with large stokes shift for specific imaging of lipid droplets [J].Chem. Sci., 2017,8(8):5440-5446.
SHI X J, YU C Y Y, SU H F, et al. A red-emissive antibody-AIEgen conjugate for turn-on and wash-free imaging of specific cancer cells [J].Chem. Sci., 2017,8(10):7014-7024.
WANG X R, HU J M, ZHANG G Y, et al. Highly selective fluorogenic multianalyte biosensors constructed via enzyme-catalyzed coupling and aggregation-induced emission [J].J. Am. Chem. Soc., 2014,136(28):9890-9893.
BIASUTTO L, DONG L F, ZORATTI M, et al. Mitochondrially targeted anti-cancer agents [J].Mitochondrion, 2010,10(6):670-681.
FLEUREN E D G, VERSLEIJEN-JONKERS Y M H, HESKAMP S, et al. Theranostic applications of antibodies in oncology [J].Mol. Oncol., 2014,8(4):799-812.
FOGG V C, LANNING N J, MACKEIGAN J P. Mitochondria in cancer:at the crossroads of life and death [J].Chin. J. Cancer, 2011,30(8):526-539.
MODICA-NAPOLITANO J S, KULAWIEC M, SINGH K K. Mitochondria and human cancer [J].Curr. Mol. Med., 2007,7(1):121-131.
MODICA-NAPOLITANO J S, SINGH K K. Mitochondria as targets for detection and treatment of cancer [J].Expert Rev. Mol. Med., 2002,4(9):1-19.
MODICA-NAPOLITANO J S, SINGH K K. Mitochondrial dysfunction in cancer [J].Mitochondrion, 2004,4(5-6):755-762.
PEDERSEN P L. Tumor mitochondria and the bioenergetics of cancer cells [J].Prog. Tumor Res., 1978,22:190-274.
DAVIS S, WEISS M J, WONG J R, et al. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells [J].J. Biol. Chem., 1985,260(25):13844-13850.
JOHNSON L V, WALSH M L, BOCKUS B J, et al. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy [J].J. Cell Biol., 1981,88(3):526-535.
MODICA-NAPOLITANO J S, APRILLE J R. Basis for the selective cytotoxicity of rhodamine 123 [J].Cancer Res., 1987,47(16):4361-4365.
LEUNG C W T, HONG Y N, CHEN S J, et al. A photostable AIE luminogen for specific mitochondrial imaging and tracking [J].J. Am. Chem. Soc., 2013,135(1):62-65.
ZHAO E G, DENG H Q, CHEN S J, et al. A dual functional AEE fluorogen as a mitochondrial-specific bioprobe and an effective photosensitizer for photodynamic therapy [J].Chem. Commun., 2014,50(92):14451-14454.
GUI C, ZHAO E G, KWOK R T K, et al. AIE-active theranostic system:selective staining and killing of cancer cells [J].Chem. Sci., 2017,8(3):1822-1830.
ZHAO N, LI M, YAN Y L, et al. A tetraphenylethene-substituted pyridinium salt with multiple functionalities:synthesis,stimuli-responsive emission,optical waveguide and specific mitochondrion imaging [J].J. Matr. Chem. C, 2013,1(31):4640-4646.
ZHAO N, CHEN S J, HONG Y N, et al. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity [J].Chem. Commun., 2015,51(71):13599-13602.
SHI B B, JIE K C, ZHOU Y J, et al. Nanoparticles with near-infrared emission enhanced by pillararene-based molecular recognition in water [J].J. Am. Chem. Soc., 2016,138(1):80-83.
GUO Z Q, ZHU W H, TIAN H. Dicyanomethylene-4H-pyranchromophores for OLED emitters,logic gates and optical chemosensors [J].Chem. Commun., 2012,48(49):6073-6084.
CHEN M, ZHANG X Y, LIU J K, et al. Evoking photothermy by capturing intramolecular bond stretching vibration-induced dark-state energy [J].ACS Nano, 2020,14(4):4265-4275.
CRAM D J, CRAM J M. Host-guest chemistry [J].Science, 1974,183(4127):803-809.
BAI H T, LV F T, LIU L B, et al. Supramolecular antibiotic switches:a potential strategy for combating drug resistance [J].Chem. Eur. J., 2016,22(32):11114-11121.
CHEN X H, GAO H Q, DENG Y Y, et al. Supramolecular aggregation-induced emission nanodots with programmed tumor microenvironment responsiveness for image-guided orthotopic pancreatic cancer therapy [J].ACS Nano, 2020,14(4):5121-5134.
BARROW S J, KASERA S, ROWLAND M J, et al. Cucurbituril-based molecular recognition [J].Chem. Rev., 2015,115(22):12320-12406.
MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution [J].Acc. Chem. Res., 2014,47(7):1971-1981.
BAI H T, LIU Z Y, ZHANG T F, et al. Multifunctional supramolecular assemblies with aggregation-induced emission (AIE) for cell line identification,cell contamination evaluation,and cancer cell discrimination [J].ACS Nano, 2020,14(6):7552-7563.
DEL BARRIO J, LIU J, BRADY R A, et al. Emerging two-dimensional crystallization of cucurbit[8] uril complexes:from supramolecular polymers to nanofibers [J].J. Am. Chem. Soc., 2019,141(36):14021-14025.
KIM K, SELVAPALAM N, KO Y H, et al. Functionalized cucurbiturils and their applications [J].Chem. Soc. Rev., 2007,36(2):267-279.
LI M, LEE A, KIM K L, et al. Autophagy caught in the act:a supramolecular FRET pair based on an ultrastable synthetic host-guest complex visualizes autophagosome-lysosome fusion [J].Angew. Chem. Int. Ed., 2018,57(8):2120-2125.
LIU H, PAN Q Y, WU C Y, et al. Construction of two-dimensional supramolecular nanostructure with aggregation-induced emission effect via host-guest interactions [J].Mater. Chem. Front., 2019,3(8):1532-1537.
LIM X. The nanolight revolution is coming [J].Nature, 2016,531(7592):26-28.
GU B B, WU W B, XU G X, et al. Precise two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics [J].Adv. Mater., 2017,29(28):1701076-1-7.
LI K, QIN W, DING D, et al. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing [J].Sci. Rep., 2013,3:1150-1-10.
FENG G X, LIU B. Aggregation-induced emission (AIE) dots:emerging theranostic nanolights [J].Acc. Chem. Res., 2018,51(6):1404-1414.
LIU Z C, PEI H, ZHANG L M, et al. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca2+ and pH in neurons [J].ACS Nano, 2018,12(12):12357-12368.
GIAMPAZOLIAS E, TAIT S W G. Mitochondria and the hallmarks of cancer [J].FEBS J., 2016,283(5):803-814.
PORPORATO P E, FILIGHEDDU N, PEDRO J M B S, et al. Mitochondrial metabolism and cancer [J].Cell Res., 2018,28(3):265-280.
ZHANG R Y, NIU G L, LI X C, et al. Reaction-free and MMP-independent fluorescent probes for long-term mitochondria visualization and tracking [J].Chem. Sci., 2019,10(7):1994-2000.
ZHANG R Y, NIU G L, LU Q, et al. Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AIEgens [J].Chem. Sci., 2020,11(29):7676-7684.
GKOUNTELA S, CASTRO-GINER F, SZCZERBA B M, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding [J].Cell, 2019,176(1-2):98-112.E14.
SITU B, CHEN S J, ZHAO E G, et al. Real-time imaging of cell behaviors in living organisms by a mitochondria-targeting AIE fluorogen [J].Adv. Funct. Mater., 2016,26(39):7132-7138.
SITU B, YE X Y, ZHAO Q W, et al. Identification and single-cell analysis of viable circulating tumor cells by a mitochondrion-specific AIE bioprobe [J].Adv. Sci., 2020,7(4):1902760-1-8.
GELLER L T, BARZILY-ROKNI M, DANINO T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine [J].Science, 2017,357(6356):1156-1160.
YU T C, GUO F F, YU Y N, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy [J].Cell, 2017,170(3):548-563.E16.
BULLMAN S, PEDAMALLU C S, SICINSKA E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer [J].Science, 2017,358(6369):1443-1448.
LEAPER D J. Surgical-site infection [J].Br. J. Surg., 2010,97(11):1601-1602.
KANG M M, KWOK R T K, WANG J G, et al. A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and gram-positive bacteria [J].J. Mater. Chem. B, 2018,6(23):3894-3903.
CHEN L B. Mitochondrial membrane potential in living cells [J].Annu. Rev. Cell Biol., 1988,4:155-181.
JIANG N, FAN J L, XU F, et al. Ratiometric fluorescence imaging of cellular polarity:decrease in mitochondrial polarity in cancer cells [J].Angew. Chem. Int. Ed., 2015,54(8):2510-2514.
0
Views
597
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution