JIAN-BIN WANG, XIAO-SHENG TANG, BI ZHOU, et al. High Performance Photomultiplication-type Organic Photodetectors Based on Small-molecule Semiconductor IEICO. [J]. Chinese journal of luminescence, 2021, 42(2): 241-249.
DOI:
JIAN-BIN WANG, XIAO-SHENG TANG, BI ZHOU, et al. High Performance Photomultiplication-type Organic Photodetectors Based on Small-molecule Semiconductor IEICO. [J]. Chinese journal of luminescence, 2021, 42(2): 241-249. DOI: 10.37188/CJL.20200349.
High Performance Photomultiplication-type Organic Photodetectors Based on Small-molecule Semiconductor IEICO
The photomultiplication(PM)-type organic photodetectors(OPDs) with the structures of ITO/ZnO/P3HT:IEICO/Al and ITO/PEDOT:PSS/P3HT:IEICO/Al are fabricated by solution-processing method
respectively. In the active layers
the weight ratio of electron donor and acceptor is 100:1. The OPDs based on a ZnO interfacial layer can work well both under forward and reverse bias voltages
while the OPDs based on a PEDOT:PSS interfacial layer can only work under reverse bias voltages. Under -15 V bias
compared with the PEDOT:PSS interfacial layer-based OPDs
the ZnO interlayer-based OPDs exhibit a more than 4 times smaller dark current density(2.2 μA/cm
2
)
a more than 3 times larger light current density(3.7 mA/cm
2
) under 1.5 mW/cm
2
light illumination
and more than 4 times larger average external quantum efficiency(3262%) and responsivity(13.3 A/W) with a more than 11 times larger average detectivity(1.6×10
13
Jones). These results demonstrate that the ZnO interfacial layer can reduce the dark current density and increase the EQEs of PM-type OPDs significantly
all of which can greatly improve the optoelectronic performance of devices.
LI D B, JIANG K, SUN X J, et al.. AlGaN photonics:recent advances in materials and ultraviolet devices[J].Adv. Opt. Photonics, 2018, 10(1):43-110.
FANG Y J, DONG Q F, SHAO Y C, et al.. Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination[J].Nat. Photonics, 2015, 9(10):679-686.
DE ARQUER F P G, ARMIN A, MEREDITH P, et al.. Solution-processed semiconductors for next-generation photodetectors[J].Nat. Rev. Mater., 2017, 2(3):16100.
BENAVIDES C M, MURTO P, CHOCHO C L, et al.. High-performance organic photodetectors from a high-bandgap indacenodithiophene-based π-conjugated donor-acceptor polymer[J].ACS Appl. Mater. Interfaces, 2018, 10(15):12937-12946.
TRUNG T Q, DANG V Q, LEE H B, et al.. An omnidirectionally stretchable photodetector based on organic-inorganic heterojunctions[J].ACS Appl. Mater. Interfaces, 2017, 9(41):35958-35967.
WANG W B, ZHANG F J, DU M D, et al.. Highly narrowband photomultiplication type organic photodetectors[J].Nano Lett., 2017, 17(3):1995-2002.
GAO W, AN Q S, MING R J, et al.. Side group engineering of small molecular acceptors for high-performance fullerene-free polymer solar cells:thiophene being superior to selenophene[J].Adv. Funct. Mater., 2017, 27(34):1702194-1-10.
YIN Z G, ZHENG Q D, CHEN S C, et al.. Controllable ZnMgO electron-transporting layers for long-term stable organic solar cells with 8.06% efficiency after one-year storage[J].Adv. Energy Mater., 2016, 6(4):1501493.
MA Y L, CHEN S C, WANG Z Y, et al.. Indacenodithiophene-based wide bandgap copolymers for high performance single-junction and tandem polymer solar cells[J].Nano Energy, 2017, 33:313-324.
WANG W B, ZHANG F J, LI L L, et al.. Highly sensitive polymer photodetectors with a broad spectral response range from UV light to the near infrared region[J].J. Mater. Chem. C, 2015, 3(28):7386-7393.
LI L L, ZHANG F J, WANG J, et al.. Achieving EQE of 16, 700% in P3HT:PC71BM based photodetectors by trap-assisted photomultiplication[J].Sci. Rep., 2015, 5:9181-1-7.
LI L L, ZHANG F J, WANG W B, et al.. Trap-assisted photomultiplication polymer photodetectors obtaining an external quantum efficiency of 37500%[J].ACS Appl. Mater. Interfaces, 2015, 7(10):5890-5897.
MIAO J L, ZHANG F J, LIN Y Z, et al.. Highly sensitive organic photodetectors with tunable spectral response under bi-directional bias[J].Adv. Opt. Mater., 2016, 4(11):1711-1717.
WANG W B, ZHANG F J, BAI H T, et al.. Photomultiplication photodetectors with P3HT:fullerene-free material as the active layers exhibiting a broad response[J].Nanoscale, 2016, 8(10):5578-5586.
CAO H Q, HE W D, MAO Y W, et al.. Recent progress in degradation and stabilization of organic solar cells[J].J. Power Sources, 2014, 264:168-183.
YIN Z G, WEI J J, ZHENG Q D. Interfacial materials for organic solar cells:recent advances and perspectives[J].Adv. Sci., 2016, 3(8):1500362-1-37.
YIN Z G, ZHENG Q D, CHEN S C, et al.. Interface control of semiconducting metal oxide layers for efficient and stable inverted polymer solar cells with open-circuit voltages over 1.0 volt[J].ACS Appl. Mater. Interfaces, 2013, 5(18):9015-9025.
KANG Z J, CHEN S C, MA Y L, et al.. Push-pull type non-fullerene acceptors for polymer solar cells:effect of the donor core[J].ACS Appl. Mater. Interfaces, 2017, 9(29):24771-24777.
WANG J B, ZHENG Q D. Enhancing the performance of photomultiplication-type organic photodetectors using solution-processed ZnO as an interfacial layer[J].J. Mater. Chem. C, 2019, 7(6):1544-1550.
HOLLIDAY S, ASHRAF R S, WADSWORTH A, et al.. High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor[J].Nat. Commun., 2016, 7:11585-1-11.