浏览全部资源
扫码关注微信
吉林大学电子科学与工程学院 集成光电子学国家重点实验室,吉林 长春 130012
Published:01 April 2021,
Received:10 November 2020,
Revised:13 January 2021,
移动端阅览
KUN-PENG LIU, DE-YE LIU, FENG-MIN LIU. Research Progress in Humidity Stability and Light-thermal Stability of All-inorganic Perovskite Solar Cells. [J]. Chinese journal of luminescence, 2021, 42(4): 486-503.
KUN-PENG LIU, DE-YE LIU, FENG-MIN LIU. Research Progress in Humidity Stability and Light-thermal Stability of All-inorganic Perovskite Solar Cells. [J]. Chinese journal of luminescence, 2021, 42(4): 486-503. DOI: 10.37188/CJL.20200343.
近年来,钙钛矿太阳能电池因高效率、低成本等特点获得了持续的关注,但是有机成分在稳定性方面始终存在一些问题。相比于有机-无机杂化钙钛矿太阳能电池,全无机钙钛矿材料可以很大程度上避免外界环境的影响,对氧环境要求低,对于湿度环境的容许度也比较大;由于自身结构,在光热稳定性方面,也要优于有机-无机杂化钙钛矿。因此,发展全无机钙钛矿太阳能电池是有效提高钙钛矿太阳能电池稳定性的方向之一。本文从稳定性方面入手,系统地介绍了全无机钙钛矿太阳能电池的最新研究进展。结合全无机钙钛矿太阳能电池稳定性的影响因素,总结了当前全无机钙钛矿电池稳定性问题的主要解决方案,最后对解决全无机钙钛矿材料的稳定性进行了展望。
In recent years
perovskite solar cells have received continuous attention due to their high efficiency and low cost
but there are problems in the stability of organic components. Compared with organic-inorganic hybrid perovskite solar cells
all-inorganic perovskite materials can avoid the influence of the external environment
with low requirements for oxygen environment and relatively high tolerance for humidity environment. Due to its own structure
it is also superior to organic-inorganic hybrid perovskite in terms of photothermal stability. Therefore
the development of perovskite solar cells is one of the directions to effectively improve the stability of perovskite solar cells. In this paper
the latest progress in the study of all-inorganic perovskite solar cells is systematically introduced from the aspect of stability. Combined with the influencing factors of the stability of all-inorganic perovskite solar cells
the main solutions to the current stability problems of all-inorganic perovskite solar cells are summarized
and the prospects for the stability of all-inorganic perovskite solar cells are given.
全无机钙钛矿太阳能电池稳定性
all-inorganic perovskitesolar cellsstability
HODES G. Perovskite-based solar cells [J].Science, 2013, 342(6156):317-318.
LIU C, LI W Z, ZHANG C L, et al. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13% [J].J. Am. Chem. Soc., 2018, 140(11):3825-3828.
LEE M M, TEUSCHER J, MIYASAKA T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites [J].Science, 2012, 338(6107):643-647.
郭旭东,牛广达,王立铎. 高效率钙钛矿型太阳能电池的化学稳定性及其研究进展 [J].化学学报,2015,73(3):211-218.
GUO X D, NIU G D, WANG L D. Chemical stability issue and its research process of perovskite solar cells with high efficiency [J].Acta Chim. Sinica, 2015, 73(3):211-218. (in Chinese)
陈薪羽,解俊杰,王炜,等. 钙钛矿材料组分调控策略及其光电器件性能研究进展 [J].化学学报,2019,77(1):9-23.
CHEN X Y, XIE J J, WANG W, et al. Research progress of compositional controlling strategy to perovskite for high performance solar cells [J].Acta Chim. Sinica, 2019, 77(1):9-23. (in Chinese)
杨英,陈甜,潘德群,等. 双面进光太阳能电池透明对电极研究进展 [J].化学学报,2018,76(9):681-690.
YANG Y, CHEN T, PAN D Q, et al. Research progress of bifacial solar cells with transparent counter electrode [J].Acta Chim. Sinica, 2018, 76(9):681-690. (in Chinese)
吴苗苗,刘世强,陈浩,等. 超卤素掺杂立方相卤化物钙钛矿太阳能电池材料第一性原理研究 [J].化学学报,2018,76(1):49-54.
WU M M, LIU S Q, CHEN H, et al. Superhalogen substitutions in cubic halide perovskite materials for solar cells:a first-principles investigation [J].Acta Chim. Sinica, 2018, 76(1):49-54. (in Chinese)
秦昱,林珍华,常晶晶,等. 印刷钙钛矿太阳能电池研究进展 [J].中国光学,2019,12(5):1015-1027.
QIN Y, LIN Z H, CHANG J J, et al. Research progress of printed perovskite solar cells [J].Chin. Opt., 2019, 12(5):1015-1027. (in Chinese)
李今朝,曹焕奇,张超,等. 气相辅助刮刀涂布法制备钙钛矿薄膜 [J].中国光学,2019,12(5):1028-1039.
LI J Z, CAO H Q, ZHANG C, et al. Vapor assisted doctor blading process to fabricate perovskite thin films [J].Chin. Opt., 2019, 12(5):1028-1039. (in Chinese)
袁海东,周龙,苏杰,等. 基于第一性原理的钙钛矿材料空位缺陷研究 [J].中国光学,2019,12(5):1048-1056.
YUAN H D, ZHOU L, SU J, et al. Investigation of self-doping in perovskites with vacancy defects based on first principles [J].Chin. Opt., 2019, 12(5):1048-1056. (in Chinese)
魏静,王秋雯,孙相彧,等. 准二维钙钛矿太阳能电池的研究进展 [J].中国光学,2021,14(1):100-116.
WEI J, WANG Q W, SUN X Y, et al. Research progress of quasi-two-dimensional perovskite solar cells [J].Chin. Opt., 2021, 14(1):100-116. (in Chinese)
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J].J. Am. Chem. Soc., 2009, 131(17):6050-6051.
IM J H, LEE C R, LEE J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J].Nanoscale, 2011, 3(10):4088-4093.
KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J].Sci. Rep., 2012, 2:591-1-7.
YOO J J, SEO G, CHUA M R, et al. Efficient perovskite solar cells via improved carrier management [J].Nature, 2021, 590:587-593.
杨英,林飞宇,朱从潭,等. 无机钙钛矿太阳能电池稳定性研究进展 [J].化学学报,2020,78(3):217-231.
YANG Y, LIN F Y, ZHU C T, et al. Research progress in the stability of inorganic perovskite solar cells [J].Acta Chim. Sinica, 2020, 78(3):217-231. (in Chinese)
PARK N G, GRÄTZEL M, MIYASAKA T, et al. Towards stable and commercially available perovskite solar cells [J].Nat. Energy, 2016, 1(11):16152.
HU Y H, AYGÜLER M F, PETRUS M L, et al. Impact of rubidium and cesium cations on the moisture stability of multiple-cation mixed-halide perovskites [J].ACS Energy Lett., 2017, 2(10):2212-2218.
WANG D, WRIGHT M, ELUMALAI N K, et al. Stability of perovskite solar cells [J].Sol. Energy Mater. Sol. Cells, 2016, 147:255-275.
MA X H, YANG L Q, LEI K X, et al. Doping in inorganic perovskite for photovoltaic application [J].Nano Energy, 2020, 78:105354.
KIM H S, SEO J Y, PARK N G, et al. Material and device stability in perovskite solar cells [J].ChemSusChem, 2016, 9(18):2528-2540.
MANSER J S, SAIDAMINOV M I, CHRISTIANS J A, et al. Making and breaking of lead halide perovskites [J].Acc. Chem. Res., 2016, 49(2):330-338.
CHEN Z, WANG J J, REN Y H, et al. Schottky solar cells based on CsSnI3 thin-films [J].Appl. Phys. Lett, 2012, 101(9):093901-1-4.
YOON S M, MIN H, KIM G B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells [J].Joule, 2021, 5(1):183-196.
MA X H, YANG L Q, LEI K X, et al. Doping in inorganic perovskite for photovoltaic application [J].Nano Energy, 2020, 78:105354.
FU L, ZHANG Y N, CHANG B H, et al. A fluorine-modulated bulk-phase heterojunction and tolerance factor for enhanced performance and structure stability of cesium lead halide perovskite solar cells [J].J. Mater. Chem. A, 2018, 6(27):13263-13270.
SANCHEZ S, CHRISTOPH N, GROBETY B, et al. Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing [J].Adv. Energy Mater., 2018, 8(30):1802060-1-9.
HU Y Q, BAI F, LIU X B, et al. Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells [J].ACS Energy Lett., 2017, 2(10):2219-2227.
LI X M, WANG K L, LGBARI F, et al. Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17% [J].Nano Res., 2020, 13(8):2203-2208.
DUAN J L, ZHAO Y Y, YANG X Y, et al. Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V [J].Adv. Energy Mater., 2018, 8(31):1802346-1-9.
DUAN J L, ZHAO Y Y, WANG Y D, et al. Hole-boosted Cu(Cr, M)O2 nanocrystals for all-inorganic CsPbBr3 perovskite solar cells [J].Angew. Chem. Int. Ed., 2019, 131(45):16293-16297.
XIANG W C, WANG Z W, KUBICKI D J, et al. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells [J].Joule, 2019, 3(1):205-214.
SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics [J].Science, 2016, 354(6308):92-95.
TSAI H, NIE W Y, BLANCON J C, et al. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells [J].Nature, 2016, 536(7616):312-316.
LIU C, YANG Y, SYZGANTSEVA O A, et al. α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells [J].Adv. Mater., 2020, 32(32):2002632.
ZHENG Y F, YANG X Y, SU R, et al. High-performance CsPbIxBr3-x all-inorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation [J].Adv. Funct. Mater., 2020, 30(46):2000457.
XIAO C X, LI Z, GUTHREY H, et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy [J].J. Phys. Chem. C, 2015, 119(48):26904-26911.
CHEN W J, CHEN H Y, XU G Y, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells [J].Joule, 2019, 3(1):191-204.
WANG Z, LIU X D, LIN Y W, et al. Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells [J].J. Mater. Chem. A, 2019, 7(6):2773-2779.
FATIMA K, HAIDER M I, FAKHARUDDIN A, et al. Performance enhancement of CsPbI2Br perovskite solar cells via stoichiometric control and interface engineering [J].Sol. Energy, 2020, 211:654-660.
WANG Y, DUAN C H, ZHANG X L, et al. Dual interfacial engineering enables efficient and reproducible CsPbI2Br all-inorganic perovskite solar cells [J].ACS Appl. Mater. Interfaces, 2020, 12(28):31659-31666.
WAN X J, YU Z, TIAN W M, et al. Efficient and stable planar all-inorganic perovskite solar cells based on high-quality CsPbBr3 films with controllable morphology [J].J. Energy Chem., 2020, 46:8-15.
PEI Y, GUO H Y, HU Z Y, et al. BiBr3 as an additive in CsPbBr3 for carbon-based all-inorganic perovskite solar cell [J].J. Alloys Compd., 2020, 835:155283-1-9.
LUO P F, XIA W, ZHOU S W, et al. Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells [J].J. Phys. Chem. Lett., 2016, 7(18):3603-3608.
WANG Q, ZHENG X P, DENG Y H, et al. Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films [J].Joule, 2017, 1(2):371-382.
ZHANG C Y, WAN X J, ZANG J D, et al. Polymer-modified CsPbI2Br films for all-inorganic planar perovskite solar cells with improved performance [J].Surf. Interfaces, 2021, 22:100809.
KIM K S, JIN I S, PARK S H, et al. Methylammonium iodide-mediated controlled crystal growth of CsPbI2Br films for efficient and stable all-inorganic perovskite solar cells [J].ACS Appl. Mater. Interfaces, 2020, 12(32):36228-36236.
WANG D, LI W J, SUN W H, et al. Guanidinium iodide modification enabled highly efficient and stable all-inorganic CsPbBr3 perovskite solar cells [J].Electrochim. Acta, 2021, 365:137360.
WANG K, JIN Z W, LIANG L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15% [J].Nat. Commun., 2018, 9(1):4544-1-8.
WANG Y, ZHANG T Y, KAN M, et al. Bifunctional stabilization of all-Inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics [J].J. Am. Chem. Soc., 2018, 140(39):12345-12348.
WU T H, WANG Y B, DAI Z S, et al. Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups [J].Adv. Mater., 2019, 31(24):1900605-1-7.
WANG Y, LIU X M, ZHANG T Y, et al. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication:additive or dopant? [J].Angew. Chem. Int. Ed., 2019, 58(46):16691-16696.
MA Z, XIAO Z, LIU Q Y, et al. Oxidization-free spiro-OMeTAD hole-transporting layer for efficient CsPbI2Br perovskite solar cells [J].ACS Appl. Mater. Interfaces, 2020, 12(47):52779-52787.
QIU Q Y, MOU J P, SONG J, et al. Surface modification of NiO nanoparticles for highly stable perovskite solar cells based on all-inorganic charge transfer layers [J].J. Electron. Mater., 2020, 49(11):6300-6307.
LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells [J].J. Am. Chem. Soc., 2016, 138(49):15829-15832.
WANG S Y, SHEN W J, CHU Y M, et al. Mesoporous-carbon-based fully-printable all-inorganic monoclinic CsPbBr3 perovskite solar cells with ultrastability under high temperature and high humidity [J].J. Phys. Chem. Lett., 2020, 11(22):9689-9695.
CONINGS B, DRIJKONINGEN J, GAUQUELIN N, et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite [J].Adv. Energy Mater., 2015, 5(15):1500477-1-8.
AKBULATOV A F, LUCHKIN S Y, FROLOVA L A, et al. Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites [J].J. Phys. Chem. Lett., 2017, 8(6):1211-1218.
JIANG Y Z, YUAN J, NI Y X, et al. Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics [J].Joule, 2018, 2(7):1356-1368.
MAHMOUDI T, WANG T S, HAHN Y B. Stability enhancement in perovskite solar cells with perovskite/silver-graphene composites in the active layer [J].ACS Energy Lett., 2019, 4(1):235-241.
LI Z, XIAO C X, YANG Y, et al. Extrinsic ion migration in perovskite solar cells [J].Energy Environ. Sci., 2017, 10(5):1234-1242.
WEID , MA F S, WANG R, et al. Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells [J].Adv. Mater., 2018, 30(31):1707583-1-10.
YE Q F, ZHAO Y, MU S Q, et al. Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination [J].Adv. Mater., 2019, 31(49):1905143-1-6.
LIU C, LI W Z, LI H Y, et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells [J].Adv. Energy Mater., 2019, 9(7):1803572.
MA Q S, HUANG S J, WEN X M, et al. Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation [J].Adv. Energy. Mater., 2016, 6(7):1502202-1-5.
LIU X Y, TAN X H, LIU Z Y, et al. Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering [J].Nano Energy, 2019, 56:184-195.
TIAN J J, XUE Q F, TANG X F, et al. Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability [J].Adv. Mater., 2019, 31(23):1901152-1-9.
ZHOU L, GUO X, LIN Z H, et al. Interface engineering of low temperature processed all-inorganic CsPbI2Br perovskite solar cells toward PCE exceeding 14% [J].Nano Energy, 2019, 60:583-590.
GUO Z L, TEO S, XU Z H, et al. Achievable high Voc of carbon based all-inorganic CsPbIBr2 perovskite solar cells through interface engineering [J].J. Mater. Chem. A, 2019, 7(3):1227-1232.
0
Views
807
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution