浏览全部资源
扫码关注微信
1.中国科学院长春应用化学研究所 稀土资源与利用国家重点实验室, 吉林 长春 130022
2.中国科学院大学, 北京 100049
3.清华大学 化学系, 北京 100084
Published:2020-12,
Received:06 November 2020,
Accepted:2020-11-12
移动端阅览
SONG-TAO ZHANG, YING-HUI WANG, HONG-JIE ZHANG. Lanthanide-doped Fluorescence Probes for NIR-Ⅱ Fluorescence Imaging. [J]. Chinese journal of luminescence, 2020, 41(12): 1460-1478.
SONG-TAO ZHANG, YING-HUI WANG, HONG-JIE ZHANG. Lanthanide-doped Fluorescence Probes for NIR-Ⅱ Fluorescence Imaging. [J]. Chinese journal of luminescence, 2020, 41(12): 1460-1478. DOI: 10.37188/CJL.20200340.
与可见光和近红外一区光相比,生物组织对近红外二区光具有更低的散射和自体荧光,因此,近红外二区荧光成像技术可以实现高灵敏度、高分辨率和高信噪比的成像,在肿瘤诊断、小分子体内检测、生物传感和免疫分析等领域展示出了广泛的应用前景。在众多的近红外二区荧光纳米材料中,稀土发光纳米材料因具有化学稳定性和光稳定性好、发射带窄、发光颜色和寿命可调等优点受到研究人员的关注。基于此,本文以稀土发光纳米材料的发光机理和设计合成为出发点,系统地综述了这类纳米材料在近红外二区荧光成像方面的最新研究进展,并对其亟需解决的问题及未来的发展趋势进行了展望。
Compared to the visible range(Vis
400-700 nm) and first near-infrared window(NIR-Ⅰ
700-1 000 nm)
fluorescence-based imaging in the second near-infrared window(NIR-Ⅱ
1 000-1 700 nm) possesses the merits of high sensitivity
spatiotemporal resolution and signal to noise ratio(SNR) with increasing tissue penetration depths benefiting from the optical scattering and auto-fluorescence in the biological tissue
leading to widespread application in the fields of tumor diagnosis
biosensing
in vivo
molecular detection and immunoassay. Among of several NIR-Ⅱ fluorescence probes
lanthanide-doped luminescence nanomaterials have attracted more attention in development of NIR-Ⅱ fluorescence imaging
owing to the advantages of high photostability and chemostability
narrow emission band widths
tunable emission wavelength and lifetime. Therefore this work takes the mechanisms and constitutions of lanthanide-doped luminescence nanomaterials as starting points and systematically summarizes the recent progress in the biomedical imaging and biosensing applications of lanthanide-doped luminescence nanomaterials. The problem to be resolved and its future development are discussed.
稀土发光纳米材料荧光探针近红外二区荧光成像
lanthanide-doped luminescence nanomaterialsfluorescence probeNIR-Ⅱfluorescence imaging
HONG G S, ANTARIS A L, DAI H J. Near-infrared fluorophores for biomedical imaging[J].Nat. Biomed. Eng., 2017, 1(1):0010.
HORTON N G, WANG K, KOBAT D, et al.. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J].Nat. Photonics, 2013, 7(3):205-209.
ZHANG X L, TIAN Y L, ZHANG C, et al.. Near-infrared fluorescence molecular imaging of amyloid beta species and monitoring therapy in animal models of alzheimer's disease[J].Proc. Natl. Acad. Sci. USA, 2015, 112(31):9734-9739.
NTZIACHRISTOS V, RIPOLL J, WANG L H V, et al.. Looking and listening to light:the evolution of whole-body photonic imaging[J].Nat. Biotechnol., 2005, 23(3):313-320.
DING S W, LU L F, FAN Y, et al.. Recent progress in NIR-Ⅱ emitting lanthanide-based nanoparticles and their biological applications[J].J. Rare Earths, 2020, 38(5):451-463.
FAN Y, ZHANG F. A new generation of NIR-Ⅱ probes:lanthanide-based nanocrystals for bioimaging and biosensing[J].Adv. Opt. Mater., 2019, 7(7):1801417.
CAI Y, WEI Z, SONG C H, et al.. Optical nano-agents in the second near-infrared window for biomedical applications[J].Chem. Soc. Rev., 2019, 48(1):22-37.
WAN H, DU H T, WANG F F, et al.. Molecular imaging in the second near-infrared window[J].Adv. Funct. Mater., 2019, 29(25):1900566-1-12.
XU J T, ZHOU J J, CHEN Y H, et al.. Lanthanide-activated nanoconstructs for optical multiplexing[J].Coord. Chem. Rev., 2020, 415:213328.
HONG G S, DIAO S, ANTARIS A L, et al.. Carbon nanomaterials for biological imaging and nanomedicinal therapy[J].Chem. Rev., 2015, 115(19):10816-10906.
HONG G S, DIAO S, CHANG J L, et al.. Through-skull fluorescence imaging of the brain in a new near-infrared window[J].Nat. Photonics, 2014, 8(9):723-730.
VIEGAS M S, MARTINS T C, SECO F,et al.. An improved and cost-effective methodology for the reduction of autofluorescence in direct immunofluorescence studies on formalin-fixed paraffin-embedded tissues[J].Eur. J. Histochem., 2007, 51(1):59-66.
FRANGIONI J V. In vivo near-infrared fluorescence imaging[J].Curr. Opin. Chem. Biol., 2003, 7(5):626-634.
NACZYNSKI D J, TAN M C, ZEVON M, et al.. Rare-earth-doped biological composites as in vivo shortwave infrared reporters[J].Nat. Commun., 2013, 4:2199-1-21.
DIAO S, HONG G S, ANTARIS A L, et al.. Biological imaging without autofluorescence in the second near-infrared region[J].Nano Res., 2015, 8(9):3027-3034.
TSUKASAKI Y, KOMATSUZAKI A, MORI Y,et al.. A short-wavelength infrared emitting multimodal probe for non-invasive visualization of phagocyte cell migration in living mice[J].Chem. Commun., 2014, 50(92):14356-14359.
WEISSLEDER R. A clearer vision for in vivo imaging[J].Nat. Biotechnol., 2001, 19(4):316-317.
SMITH A M, MANCINI M C, NIE S M. Bioimaging:second window for in vivo imaging[J].Nat. Nanotechnol., 2009, 4(11):710-711.
BASHKATOV A N, GENINA E A, KOCHUBEY V I, et al.. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm[J].J. Phys. D Appl. Phys., 2005, 38(15):2543-2555.
WANG R, ZHOU L, WANG W X, et al.. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers[J].Nat. Commun., 2017, 8:14702-1-12.
YANG F, SKRIPKA A, TABATABAEI M S, et al.. Multifunctional self-assembled supernanoparticles for deep-tissue bimodal imaging and amplified dual-mode heating treatment[J].ACS Nano, 2019, 13(1):408-420.
BRUNS O T, BISCHOF T S, HARRIS D K, et al.. Next-generation in vivo optical imaging with short-wave infrared quantum dots[J].Nat. Biomed. Eng., 2017, 1(4):0056-1-29.
HUANG D H, LIN S Y, WANG Q W, et al.. An NIR-Ⅱ fluorescence/dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells[J].Adv. Funct. Mater., 2019, 29(2):1806546-1-11.
YANG T, TANG Y A, LIU L, et al.. Size-dependent Ag2S nanodots for second near-infrared fluorescence/photoacoustics imaging and simultaneous photothermal therapy[J].ACS Nano, 2017, 11(2):1848-1857.
KONG Y F, CHEN J, FANG H W, et al.. Highly fluorescent ribonuclease-A-encapsulated lead sulfide quantum dots for ultrasensitive fluorescence in vivo imaging in the second near-infrared window[J].Chem. Mater., 2016, 28(9):3041-3050.
DIAO S, BLACKBURN J L, HONG G S, et al.. Fluorescence imaging in vivo at wavelengths beyond 1500 nm[J].Angew. Chem. Int. Ed., 2015, 54(49):14758-14762.
ROBINSON J T, HONG G S, LIANG Y Y,et al.. In vivo fluorescence imaging in the second near-infrared window with long circulating carbon nanotubes capable of ultrahigh tumor uptake[J].J. Am. Chem. Soc., 2012, 134(25):10664-10669.
LI T W, LI C Y, RUAN Z, et al.. Polypeptide-conjugated second near-infrared organic fluorophore for image-guided photothermal therapy[J].ACS Nano, 2019, 13(3):3691-3702.
SHENG Z H, GUO B, HU D H, et al.. Bright aggregation-induced-emission dots for targeted synergetic NIR-Ⅱ fluorescence and NIR-Ⅰ photoacoustic imaging of orthotopic brain tumors[J].Adv. Mater., 2018, 30(29):1800766-1-8.
WAN H, YUE J Y, ZHU S J, et al.. A bright organic NIR-Ⅱ nanofluorophore for three-dimensional imaging into biological tissues[J].Nat. Commun., 2018, 9:1171-1-9.
ZHU S J, HU Z B, TIAN R, et al.. Repurposing cyanine NIR-Ⅰ dyes accelerates clinical translation of near-infrared-Ⅱ (NIR-Ⅱ) bioimaging[J].Adv. Mater., 2018, 30(34):1802546-1-9.
WAN H, MA H L, ZHU S J, et al.. Developing a bright NIR-Ⅱ fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint PD-L1[J].Adv. Funct. Mater., 2018, 28(50):1804956-1-10.
ANTARIS A L, CHEN H, CHENG K, et al.. A small-molecule dye for NIR-Ⅱ imaging[J].Nat. Mater., 2016, 15(2):235-242.
ZHANG X D, WANG H S, ANTARIS A L, et al.. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore[J].Adv. Mater., 2016, 28(32):6872-6879.
WANG S F, LI B H, ZHANG F. Molecular fluorophores for deep-tissue bioimaging[J].ACS Cent. Sci., 2020, 6(8):1302-1316.
HONG G S, ZOU Y P, ANTARIS A L, et al.. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near-infrared window[J].Nat. Commun., 2014, 5:4206-1-9.
GU Y Y, GUO Z Y, YUAN W, et al.. High-sensitivity imaging of time-domain near-infrared light transducer[J].Nat. Photonics, 2019, 13(8):525-531.
ZHONG Y T, MA Z R, WANG F F, et al.. In vivo molecular imaging for immunotherapy using ultra-bright near-infrared-Ⅱb rare-earth nanoparticles[J].Nat. Biotechnol., 2019, 37(11):1322-1331.
LU Y Q, ZHAO J B, ZHANG R, et al.. Tunable lifetime multiplexing using luminescent nanocrystals[J].Nat. Photonics, 2014, 8(1):32-36.
GARGAS D J, CHAN E M, OSTROWSKI A D, et al.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging[J].Nat. Nanotechnol., 2014, 9(4):300-305.
XU J T, GULZAR A, YANG P P, et al.. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs:mechanism, design and application for bioimaging[J].Coord. Chem. Rev., 2019, 381:104-134.
FAN Y, WANG P Y, LU Y Q, et al.. Lifetime-engineered NIR-Ⅱ nanoparticles unlock multiplexed in vivo imaging[J].Nat. Nanotechnol., 2018, 13(10):941-946.
LIU L, WANG S F, ZHAO B Z, et al.. Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing[J].Angew. Chem. Int. Ed., 2018, 57(25):7518-7522.
ZHANG H X, FAN Y, PEI P, et al.. Tm3+ -sensitized NIR-Ⅱ fluorescent nanocrystals for in vivo information storage and decoding[J].Angew. Chem. Int. Ed., 2019, 58(30):10153-10157.
LI Y B, LI X L, XUE Z L, et al.. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection[J].Biomaterials, 2018, 169:35-44.
WANG G F, PENG Q, LI Y D. Lanthanide-doped nanocrystals:synthesis, optical-magnetic properties, and applications[J].Acc. Chem. Res., 2011, 44(5):322-332.
WANG D, WANG D P, KUZMIN A, et al.. ICG-sensitized NaYF4:Er nanostructure for theranostics[J].Adv. Opt. Mater., 2018, 6(12):1701142-1-9.
SHAO W, CHEN G Y, KUZMIN A, et al.. Tunable narrow band emissions from dye-sensitized core/shell/shell nanocrystals in the second near-infrared biological window[J].J. Am. Chem. Soc., 2016, 138(50):16192-16195.
TAN M L, DEL ROSAL B, ZHANG Y Q, et al.. Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window[J].Nanoscale, 2018, 10(37):17771-17780.
FISCHER S, BRONSTEIN N D, SWABECK J K, et al.. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals[J].Nano Lett., 2016, 16(11):7241-7247.
ORTGIES D H, TAN M L, XIMENDES E C, et al.. Lifetime-encoded infrared-emitting nanoparticles for in vivo multiplexed imaging[J].ACS Nano, 2018, 12(5):4362-4368.
JOHNSON N J, HE S, DIAO S, et al.. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals[J].J. Am. Chem. Soc., 2017, 139(8):3275-3282.
TU D T, LIU L Q, JU Q, et al.. Time-resolved fret biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals[J].Angew. Chem. Int. Ed., 2011, 50(28):6306-6310.
LU Y Q, LU J, ZHAO J B, et al.. On-the-fly decoding luminescence lifetimes in the microsecond region for lanthanide-encoded suspension arrays[J].Nat. Commun., 2014, 5:3741-1-8.
LIU Z, REN F, ZHANG H, et al.. Boosting often overlooked long wavelength emissions of rare-earth nanoparticles for NIR-Ⅱ fluorescence imaging of orthotopic glioblastoma[J].Biomaterials, 2019, 219:119364.
HE S Q, CHEN S, LI D F, et al.. High affinity to skeleton rare earth doped nanoparticles for near-infrared Ⅱ imaging[J].Nano Lett., 2019, 19(5):2985-2992.
LI D F, HE S Q, WU Y F, et al.. Excretable lanthanide nanoparticle for biomedical imaging and surgical navigation in the second near-infrared window[J].Adv. Sci., 2019, 6(23):1902042-1-12.
WANG P Y, FAN Y, LU L F, et al.. NIR-Ⅱ nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer[J].Nat. Commun., 2018, 9(1):2898.
WANG X, YAKOVLIEV A, OHULCHANSKYY T Y, et al.. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging[J].Adv. Opt. Mater., 2018, 6(20):1800690-1-7.
LI Y B, ZENG S J, HAO J H. Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm[J].ACS Nano, 2019, 13(1):248-259.
ZHONG Y T, MA Z R, ZHU S J, et al.. Boosting the down-shifting luminescence of rare-earth nanocrystals for biological imaging beyond 1500 nm[J].Nat. Commun., 2017, 8(1):737-1-7.
CAO C, ZHOU X B, XUE M, et al.. Dual near-infrared-emissive luminescent nanoprobes for ratiometric luminescent monitoring of ClO- in living organisms[J].ACS Appl. Mater Interfaces, 2019, 11(17):15298-15305.
CHEN Q S, XIE X J, HUANG B L, et al.. Confining excitation energy in Er3+ -sensitized upconversion nanocrystals through Tm3+ -mediated transient energy trapping[J].Angew. Chem. Int. Ed., 2017, 56(26):7605-7609.
LI Z, WU J J, WANG Q R, et al.. A universal strategy to construct lanthanide-doped nanoparticles-based activable NIR-Ⅱ luminescence probe for bioimaging[J].iScience, 2020, 23(3):100962-1-47.
GE X G, LOU Y H, SU L C, et al.. Single wavelength laser excitation ratiometric NIR-Ⅱ fluorescent probe for molecule imaging in vivo[J].Anal. Chem., 2020, 92(8):6111-6120.
KAMIMURA M, MATSUMOTO T, SUYARI S, et al.. Ratiometric near-infrared fluorescence nanothermometry in the OTN-NIR (NIR Ⅱ/Ⅲ) biological window based on rare-earth doped β-NaYF4 nanoparticles[J].J. Mat. Chem. B, 2017, 5(10):1917-1925.
LEI X L, LI R F, TU D T, et al.. Intense near-infrared-Ⅱ luminescence from NaCeF4:Er/Yb nanoprobes for in vitro bioassay and in vivo bioimaging[J].Chem. Sci., 2018, 9(20):4682-4688.
YANG Y L, WANG P Y, LU L F, et al.. Small-molecule lanthanide complexes probe for second near-infrared window bioimaging[J].Anal. Chem., 2018, 90(13):7946-7952.
ZHAO M Y, WANG R, LI B H, et al.. Precise in vivo inflammation imaging using in situ responsive cross-linking of glutathione-modified ultra-small NIR-Ⅱ lanthanide nanoparticles[J].Angew. Chem. Int. Ed., 2019, 58(7):2050-2054.
LIU Y X, FAN H M, GUO Q W, et al.. Ultra-small pH-responsive Nd-doped NaDyF4 nanoagents for enhanced cancer theranostic by in situ aggregation[J].Theranostics, 2017, 7(17):4217-4228.
JIANG M, LIU H, ZENG S,et al.. A general in situ growth strategy of designing theranostic NaLnF4@Cu2-xS nanoplatform for in vivo NIR-Ⅱ optical imaging beyond 1500 nm and photothermal therapy[J].Adv. Therap., 2019, 2(6):1800153.
WANG Y F, LIU G Y, SUN L D, et al.. Nd3+-sensitized upconversion nanophosphors:efficient in vivo bioimaging probes with minimized heating effect[J].ACS Nano, 2013, 7(8):7200-7206.
LEVY E S, TAJON C A, BISCHOF T S, et al.. Energy-looping nanoparticles:harnessing excited-state absorption for deep-tissue imaging[J].ACS Nano, 2016, 10(9):8423-8433.
CHENG X W, PAN Y, YUAN Z, et al.. Er3+ sensitized photon upconversion nanocrystals[J].Adv. Funct. Mater., 2018, 28(22):1800208.
CHENG X W, GE H, WEI Y, et al.. Design for brighter photon upconversion emissions via energy level overlap of lanthanide ions[J].ACS Nano, 2018, 12(11):10992-10999.
OWENS E A, HENARY M, EL FAKHRI G, et al.. Tissue-specific near-infrared fluorescence imaging[J].Acc. Chem. Res., 2016, 49(9):1731-1740.
KOBAYASHI H, CHOYKE P L. Target-cancer-cell-specific activatable fluorescence imaging probes:rational design and in vivo applications[J].Acc. Chem. Res., 2011, 44(2):83-90.
LU Y, AIMETTI A A, LANGER R, et al.. Bioresponsive materials[J].Nat. Rev. Mater., 2017, 2(1):16075.
ZHANG X, AN L, TIAN Q W, et al.. Tumor microenvironment-activated NIR-Ⅱ reagents for tumor imaging and therapy[J].J. Mater. Chem. B, 2020, 8(22):4738-4747.
KIM J, CHO H R, JEON H, et al.. Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer[J].J. Am. Chem. Soc., 2017, 139(32):10992-10995.
WANG S F, LIU L, FAN Y, et al.. In vivo high-resolution ratiometric fluorescence imaging of inflammation using NIR-Ⅱ nanoprobes with 1550 nm emission[J].Nano Lett., 2019, 19(4):2418-2427.
TANG Y F, PEI F, LU X M, et al.. Recent advances on activatable NIR-Ⅱ fluorescence probes for biomedical imaging[J].Adv. Opt. Mater., 2019, 7(21):1900917.
ZHANG J J, ZHEN X, UPPUTURI P K, et al.. Activatable photoacoustic nanoprobes for in vivo ratiometric imaging of peroxynitrite[J].Adv. Mater., 2017, 29(6):1604764.
LEE M H, SESSLER J L, KIM J S. Disulfide-based multifunctional conjugates for targeted theranostic drug delivery[J].Acc. Chem. Res., 2015, 48(11):2935-2946.
GAO Y, SHI J F, YUAN D, et al.. Imaging enzyme-triggered self-assembly of small molecules inside live cells[J].Nat. Commun., 2012, 3:1033-1-19.
ZHANG J J, CHENG P H, PU K Y. Recent advances of molecular optical probes in imaging of β-galactosidase[J].Bioconjug. Chem., 2019, 30(8):2089-2101.
KONG M Y, GU Y Y, LIU Y L, et al.. Luminescence lifetime-based in vivo detection with responsive rare earth-dye nanocomposite[J]. Small, 2019, 15(46):1904487.
STROWIG T, HENAO-MEJIA J, ELINAV E, et al.. Inflammasomes in health and disease[J].Nature, 2012, 481(7381):278-286.
ZHENG X L, ZHU X J, LU Y Q, et al.. High-contrast visualization of upconversion luminescence in mice using time-gating approach[J].Anal. Chem., 2016, 88(7):3449-3454.
YANG W, CHEN S L. Time-gated fluorescence imaging:advances in technology and biological applications[J].J. Innov. Opt. Health Sci., 2020, 13(03):2030006.
ZHAO M Y, LI B H, WU Y F, et al.. A tumor-microenvironment-responsive lanthanide-cyanine fret sensor for NIR-Ⅱ luminescence-lifetime in situ imaging of hepatocellular carcinoma[J].Adv. Mater., 2020, 32(28):2001172.
ZHOU L, FAN Y, WANG R, et al.. High-capacity upconversion wavelength and lifetime binary encoding for multiplexed biodetection[J].Angew. Chem. Int. Ed., 2018, 57(39):12824-12829.
TAN M L, LI F, WANG X, et al.. Temporal multilevel luminescence anticounterfeiting through scattering media[J].ACS Nano, 2020, 14(6):6532-6538.
TAN M L, LI F, CAO N, et al.. Accurate in vivo nanothermometry through NIR-Ⅱ lanthanide luminescence lifetime[J].Small, 2020:2004118.
CHEN B, WANG F. Combating concentration quenching in upconversion nanoparticles[J].Acc. Chem. Res., 2020, 53(2):358-367.
HAN S Y, DENG R R, XIE X J, et al.. Enhancing luminescence in lanthanide-doped upconversion nanoparticles[J].Angew. Chem. Int. Ed., 2014, 53(44):11702-11715.
WÜRTH C, FISCHER S, GRAUEL B, et al.. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles[J].J. Am. Chem. Soc., 2018, 140(14):4922-4928.
WANG J, DENG R R, MACDONALD M A,et al.. Enhancing multiphoton upconversion through energy clustering at sublattice level[J].Nat. Mater., 2014, 13(2):157-162.
WEN S H, ZHOU J J, ZHENG K Z, et al.. Advances in highly doped upconversion nanoparticles[J].Nat. Commun., 2018, 9(1):2415-1-12.
LI H, WANG X, OHULCHANSKYY T Y, et al.. Lanthanide-doped near-infrared nanoparticles for biophotonics[J].Adv. Mater., 2020:e2000678.
CHOI H S, LIU W H, MISRA P, et al.. Renal clearance of quantum dots[J].Nat. Biotechnol., 2007, 25(10):1165-1170.
CHOI H S, LIU W H, LIU F B, et al.. Design considerations for tumour-targeted nanoparticles[J].Nat. Nanotechnol., 2010, 5(1):42-47.
KOBAYASHI H, LONGMIRE M R, OGAWA M, et al.. Rational chemical design of the next generation of molecular imaging probes based on physics and biology:mixing modalities, colors and signals[J].Chem. Soc. Rev., 2011, 40(9):4626-4648.
LI H, WANG X, LI X L, et al.. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging[J].Chem. Mater., 2020, 32(8):3365-3375.
0
Views
1207
下载量
7
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution