浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2.中国科学院大学 材料与光电研究中心, 北京 100049
Published:2020-12,
Received:06 November 2020,
Accepted:2020-11-18
移动端阅览
JI-YE ZHANG, XUE LI, JIAN-WEI ZHANG, et al. Research Progress of Vertical-cavity Surface-emitting Laser. [J]. Chinese journal of luminescence, 2020, 41(12): 1443-1459.
JI-YE ZHANG, XUE LI, JIAN-WEI ZHANG, et al. Research Progress of Vertical-cavity Surface-emitting Laser. [J]. Chinese journal of luminescence, 2020, 41(12): 1443-1459. DOI: 10.37188/CJL.20200339.
垂直腔面发射激光器(Vertical-cavity surface-emitting laser,VCSEL)是40多年前被发明的,具有很多独特的优势,例如尺寸小、功耗低、效率高、寿命长、圆形光束以及二维面阵集成等。近年来,VCSEL市场发展迅速,在5G通信、光信息存储、3D传感、激光雷达、材料加工以及激光显示等领域被广泛应用。针对不同的应用需求,VCSEL的功率、速率、能效、高温性能以及波长的多样性等性能都有了长足的进步。本文首先介绍了VCSEL的研究历程和优点特性;综述了VCSEL在高功率、高速、高温下工作等方面的研究进展和应用现状;最后对VCSEL的最新应用做了介绍,展望了VCSEL的市场。
The vertical-cavity surface emitting laser(VCSEL) was invented 40 years ago
where a lot of unique features can be expected
such as small footprint
low power consumption
high efficiency
long lifetime
circular beam and two-dimensional arrangement and so on. In recent years
the market of VCSELs has been growing up rapidly
and VCSELs are now key devices in the fields of 5G communication
optical information storage
3D sensing
material processing
light detection and ranging(LiDAR)
and laser display. For different application requirements
VCSEL has great achievements in the area of power
efficiency
speed and wavelength. In this paper
firstly
the research history and advantages of VCSEL are introduced; then
the research progress and application status of VCSEL at high power
high speed and high temperature are reviewed; lastly
the latest application of VCSEL is introduced
and the market of VCSEL is prospected.
垂直腔面发射激光器高功率高速高温
vertical-cavity surface emitting laser(VCSEL)high powerhigh speedhigh temperature
IGA K. Vertical-cavity surface-emitting laser:its conception and evolution[J].Jpn. J. Appl. Phys., 2008, 47(1R):1-10.
SODA H, IGA K I, KITAHARA C, et al.. GaInAsP/InP surface emitting injection lasers[J].Jpn. J. Appl. Phys., 1979, 18(12):2329-2330.
伊贺健一, 小山二三夫.面发射激光器基础与应用[M].郑军, 译.北京: 科学出版社, 2002.
IGA K, KOYAMA F. Basic and Application of Surface Emitting Lasers [M]. ZHENG J, trans. Beijing: Science Press, 2002. (in Chinese)
IGA K, KINOSHITA S, KOYAMA F. Microcavity GalaAs/GaAs surface-emitting laser with Ith=6 mA[J].Electron. Lett., 1987, 23(3):134-136.
KOYAMA F, KINOSHITA S, IGA K. Room-temperature continuous wave lasing characteristics of a GaAs vertical cavity surface-emitting laser[J].Appl. Phys. Lett., 1989, 55(3):221-222.
KOYAMA F, UENOHARA H, SAKAGUCHI T, et al.. GaAlAs/GaAs MOCVD growth for surface emitting laser[J].Jpn. J. Appl. Phys., 1987, 26(7R):1077-1081.
MIZUTANI A, HATORI N, NISHIYAMA N, et al.. MOCVD grown InGaAs/GaAs vertical cavity surface emitting laser on GaAs[J].Electron. Lett., 1997, 33(22):1877-1878.
MCDANIEL D L, MCINERNEY J G, RAJA M Y A, et al.. Vertical cavity surface-emitting semiconductor laser with CW injection laser pumping[J].IEEE Photonics Technol. Lett., 1990, 2(3):156-158.
HADLEY M A, WILSON G C, LAU K Y, et al.. High single-transverse-mode output from external-cavity surface-emitting laser diodes[J].Appl. Phys. Lett., 1993, 63(12):1607-1609.
OKUR S, SCHELLER M A, SEURIN J F, et al.. High-power VCSEL arrays with customized beam divergence for 3D-sensing applications[C].Proceedings of SPIE 10938, Vertical-cavity Surface-emitting Lasers ⅩⅩⅢ, San Francisco, 2019: 109380F.
EBELING K J, MICHALZIK R. VCSEL technology for imaging and sensor systems applications[C].Proceedings of The 201722nd Microoptics Conference, Tokyo, Japan, 2017.
LING W A, LYUBOMIRSKY I, RODES R, et al.. Single-channel 50 G and 100 G discrete multitone transmission with 25 G VCSEL technology[J].J. Lightw. Technol., 2015, 33(4):761-767.
ISOE G M, WASSIN S, GIBBON T B. Multicast-enabled high-speed VCSEL technology for flexible data center networks[J].Optoelectron. Lett., 2018, 14(6):438-441.
LEDENTSOVJR N, AGUSTIN M, SHCHUKIN V A, et al.. Quantum dot 850 nm VCSELs with extreme high temperature stability operating at bit rates up to 25 Gbit/s at 150℃[J].Solid-State Electron., 2019, 155:150-158.
GRABHERR M, MILLER M, JAGER R, et al.. High-power VCSELs:single devices and densely packed 2-D-arrays[J].IEEE J. Sel. Top. Quantum Electron., 1999, 5(3):495-502.
FRANCIS D, CHEN H L, YUEN W, et al.. Monolithic 2D-VCSEL array with >2 W CW and >5 W pulsed output power[J]. Electron. Lett., 1998, 34(22):2132-2133.
MILLER M, GRABHERR M, KING R, et al.. Improved output performance of high-power VCSELs[J].IEEE J. Sel. Top. Quantum Electron., 2001, 7(2):210-216.
LI T, NING Y Q, SUN Y F,et al.. High-power InGaAs VCSEL's single devices and 2-D arrays[J].J. Lumin., 2007, 122-123:571-573.
D'ASARO L A, SEURIN J F, WYNN J D. High-power, high-efficiency VCSELs pursue the goal[J].Photonics Spectra, 2005, 39(2):62-66.
SEURIN J F, GHOSH C L, KHALFIN V, et al.. High-power high-efficiency 2D VCSEL arrays[C].Proceedings of SPIE Vertical-cavity Surface-emitting Lasers Ⅻ, San Jose, CA, USA, 2008: 690808-1-14.
SEURIN J F, GHOSH C L, KHALFIN V, et al.. High-power vertical-cavity surface-emitting arrays[C].Proceedings of SPIE 6876, High-power Diode Laser Technology and Applications Ⅵ, San Jose, CA, USA, 2008: 68760D.
ZHANG L S, NING Y Q, ZENG Y G, et al.. High-power bottom-emitting vertical-cavity surface-emitting lasers under continuous-wave, quasi-continuous-wave, and pulsed operation[J].Appl. Phys. Express, 2011, 4(5):052102-1-3.
刘迪, 宁永强, 张金龙, 等.高功率InGaAs/GaAsP应变量子阱垂直腔面发射激光器列阵[J].光学精密工程, 2012, 20(10):2147-2153.
LIU D, NING Y Q, ZHANG J L, et al.. High-power InGaAs/GaAsP strained quantum well vertical-cavity surface-emitting laser array[J].Opt. Precision Eng., 2012, 20(10):2147-2153. (in Chinese)
ZHANG J W, NING Y Q, ZHANG X, et al.. High-peak-power vertical-cavity surface-emitting laser quasi-array realized using optimized large-aperture single emitters[J].Jpn. J. Appl. Phys., 2014, 53(7):070303.
SUMMERS H D, PRESTON J M, KEMP A J, et al.. Microchip laser with vertical-cavity surface-emitting laser diode pump[C].Proceeding of Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-optics. Postconference Edition. CLEO' 99. Conference on Lasers and Electro-optics, Baltimore, MD, USA, 1999: 517-518.
SEURIN J F, XU G Y, KHALFIN V, et al.. Progress in high-power high-efficiency VCSEL arrays[C].Proceeding of SPIE 7229, Vertical-cavity Surface-emitting Lasers ⅩⅢ, San Jose, CA, USA, 2009: 722903-1-11.
SEURIN J F, XU G Y, GUO B M, et al.. Efficient vertical-cavity surface-emitting lasers for infrared illumination applications[C].Proceedings of SPIE 7952, Vertical-cavity Surface-emitting Lasers ⅩⅤ, San Francisco, CA, USA, 2011: 79520G-1-10.
VAN LEEUWEN R, XIONG Y H, WATKINS L S, et al.. High power 808 nm VCSEL arrays for pumping of compact pulsed high energy Nd: YAG lasers operating at 946 nm and 1064 nm for blue and UV light generation[C].Proceedings of SPIE 7912, Solid State Lasers ⅩⅩ: Technology and Devices, San Francisco, CA, USA, 2011: 79120Z-1-7.
VAN LEEUWEN R, ZHAO P, CHEN T, et al.. High power high repetition rate VCSEL array side-pumped pulsed blue laser[C].Proceedings of SPIE 8599, Solid State Lasers ⅩⅫ: Technology and Devices, San Francisco, CA, USA, 2013: 85991I-1-6.
VAN LEEUWEN R, XIONG Y H, SEURIN J F, et al.. High-power vertical-cavity surface-emitting lasers for diode pumped solid-state lasers[C].Proceedings of SPIE 8381, Laser Technology for Defense and Security Ⅷ, Baltimore, Maryland, USA, 2012: 83810I-1-7.
ZHOU D L, SEURIN J F, XU G Y, et al.. Progress on high-power 808 nm VCSELs and applications[C].Proceedings of SPIE 10122, Vertical-cavity Surface-emitting Lasers ⅩⅪ, San Francisco, CA, USA, 2017: 1012206.
张艳. 808-nm垂直腔面发射激光器的结构设计与研制[D].长春: 中国科学院长春光学精密机械与物理研究所, 2011: 71-72.
ZHANG Y. Structural Design and Fabrication of 808-nm Vertical-cavity Surface-emitting Laser [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011: 71-72. (in Chinese)
张金胜.高功率半导体激光器结构研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2014: 89-92.
ZHANG J S. Investigations on The High Power Semiconductor Laser Structure [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014: 89-92. (in Chinese)
ZHOU D L, SEURIN J F, XU G Y, et al.. Progress on vertical-cavity surface-emitting laser arrays for infrared illumination applications[C].Proceedings of SPIE 9001, Vertical-cavity Surface-emitting Lasers ⅩⅧ, San Francisco, CA, USA, 2014: 172-176.
HAO Y Q, LUO Y, FENG Y, et al.. Large aperture vertical cavity surface emitting laser with distributed-ring contact[J].Appl. Opt., 2011, 50(7):1034-1037.
ZHANG X, NING Y Q, ZENG Y G, et al.. 980-nm high-power low-divergence VCSELs achieved by optimization of current density distribution[J].IEEE J. Quantum Elect., 2012, 48(1):42-48.
王贞福, 宁永强, 张岩, 等.微透镜集成大功率垂直腔面发射激光器[J].中国激光, 2009, 36(8):1963-1967.
WANG Z F, NING Y Q, ZHANG Y, et al.. High-power and microlens-integrated vertical cavity surface emitting lasers[J].Chin. J. Lasers, 2009, 36(8):1963-1967. (in Chinese)
WANG Z F, NING Y Q, ZHANG Y, et al.. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array[J].Opt. Express, 2010, 18(23):23900-23905.
ZHANG X W, NING Y Q, QIN L, et al.. The design and analysis of sub-wavelength metal-grating large-aperture VCSELs[J].Appl. Phys. B, 2012, 109(1):171-175.
HIROSE K, LIANG Y, KUROSAKA Y, et al.. Watt-class high-power, high-beam-quality photonic-crystal lasers[J].Nat. Photonics, 2014, 8(5):406-411.
MCINERNEY J G, MOORADIAN A, LEWIS A, et al.. High-power surface emitting semiconductor laser with extended vertical compound cavity[J].Electron. Lett., 2003, 39(6):523-525.
VAN LEEUWEN R, SEURIN J F, XU G Y, et al.. High-power pulsed intra-cavity frequency doubled vertical extended cavity blue laser arrays[C].Proceeding of SPIE 7193, Solid State Lasers ⅩⅧ: Technology and Devices, San Jose, CA, USA, 2009: 71931D.
LUTGEN S, ALBRECHT T, BRICK P, et al.. 8-W high-efficiency continuous-wave semiconductor disk laser at 1000 nm[J].Appl. Phys. Lett., 2003, 82(21):3620-3622.
LEE J H, KIM J Y, LEE S M, et al.. 9.1-W high-efficient continuous-wave end-pumped vertical-external-cavity surface-emitting semiconductor laser[J].IEEE Photonics Technol. Lett., 2006, 18(20):2117-2119.
RUDIN B, RUTZ A, HOFFMANN M, et al.. Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode[J].Opt. Lett., 2008, 33(22):2719-2721.
HEINEN B, WANG T L, SPARENBERG M, et al.. 106 W continuous-wave output power from vertical-external-cavity surface-emitting laser[J].Electron. Lett., 2012, 48(9):516-517.
ZHANG F, GAAFAR M, MÖLLER C, et al.. Dual-wavelength emission from a serially connected two-chip VECSEL[J].IEEE Photonics Technol. Lett., 2016, 28(8):927-929.
张继业, 张建伟, 曾玉刚, 等.高功率垂直外腔面发射半导体激光器增益设计及制备[J].物理学报, 2020, 69(5):054204-1-9.
ZHANG J Y, ZHANG J W, ZENG Y G, et al.. Design of gain region of high-power vertical external cavity surface emitting semiconductor laser and its fabrication[J].Acta Phys. Sinica, 2020, 69(5):054204-1-9. (in Chinese)
史晶晶, 秦莉, 刘迪, 等.大功率垂直腔面发射激光器列阵的串接结构[J].光学精密工程, 2011, 19(10):2309-2313.
SHI J J, QIN L, LIU D, et al.. High-power vertical cavity surface emitting laser array in series structure[J].Opt. Precision Eng., 2011, 19(10):2309-2313. (in Chinese)
马莹, 王成, 缪同群. VCSEL直接倍频蓝光固态激光器的研究[J].光学精密工程, 2005, 13(3):253-259.
MA Y, WANG C, MIAO T Q. Blue light laser by direct frequency doubling of VCSEL[J].Opt. Precision Eng., 2005, 13(3):253-259. (in Chinese)
张星, 宁永强, 曾玉刚, 等. 980 nm高功率垂直腔面发射激光列阵的单元结构优化[J].光学精密工程, 2011, 19(9):2014-2022.
ZHANG X, NING Y Q, ZENG Y G, et al.. Optimization of element structure in 980 nm high-power vertical-cavity surface-emitting laser array[J].Opt. Precision Eng., 2011, 19(9):2014-2022. (in Chinese)
MOENCH H, CONRADS R, DEPPE C, et al.. High-power VCSEL systems and applications[J].Proceedings of SPIE 9348, High-power Diode Laser Technology and Applications ⅩⅢ, San Francisco, USA, 2015, 93480w.
WANG K, NIRMALATHAS A, LIM C, et al.. High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability[J].Opt. Express, 2013, 21(13):15395-15400.
TATUM J A. The evolution of 850 nm VCSELs from 10 Gb/s to 25 and 56 Gb/s[C].Proceedings of OFC 2014, San Francisco, CA, USA, 2014: 1-3.
TAN M R T. Commercial applications of vertical cavity surface emitting lasers[C].Proceedings of Conference on Lasers and Electro-optics(CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39, San Francisco, CA, USA, 2000: 201.
JOHNSON R H, KUCHTA D M. 30 Gb/s directly modulated 850 nm datacom VCSELs[C].Proceedings of Conference on Lasers and Electro-Optics 2008, San Jose, CA, USA, 2008: CPDB2.
WESTBERGH P, GUSTAVSSON J S, HAGLUND A, et al.. 32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL[J].Electron. Lett., 2009, 45(7):366-368.
WESTBERGH P, SAFAISINI R, HAGLUND E, et al.. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s[J].Electron. Lett., 2012, 48(18):1145-1147.
WESTBERGH P, HAGLUND E P, HAGLUND E, et al.. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s[J].Electron. Lett., 2013, 49(16):1021-1023.
KUCHTA D M, RYLYAKOV A V, DOANY F E, et al.. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J].IEEE Photonics Technol. Lett., 2015, 27(6):577-580.
BLOKHIN S A, LOTT J A, MUTIG A, et al.. Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s[J].Electron. Lett., 2009, 45(10):501-503.
KUCHTA D M, RYLYAKOV A V, SCHOW C L, et al.. A 55 Gb/s directly modulated 850 nm VCSEL-based optical link[C].Proceedings of IEEE Photonics Conference 2012, Burlingame, CA, USA, 2012: 1-2.
KUCHTA D M, SCHOW C L, RYLYAKOV A V, et al.. A 56.1 Gb/s NRZ modulated 850 nm VCSEL-based optical link[C].Proceedings of 2013Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Anaheim, CA, USA, 2013: 1-3.
SHI J W, YAN J C, WUN J M, et al.. Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/s operations[J].IEEE J. Sel. Top. Quantum Electron., 2013, 19(12):7900208.
CHI K L, YEN J L, WUN J M, et al.. Strong wavelength detuning of 850 nm vertical-cavity surface-emitting lasers for high-speed (>40 Gbit/s) and low-energy consumption operation[J].IEEE J. Sel. Top. Quantum Electron., 2015, 21(6):1701510.
LIU M, WANG C Y, FENG M, et al.. 50 Gb/s error-free data transmission of 850 nm oxide-confined VCSELs[C].Proceedings of 2016 Optical Fiber Communications Conference and Exhibition, Anaheim, CA, USA, 2016: 1-3.
NASU H. Short-reach optical interconnects employing high-density parallel-optical modules[J].IEEE J. Sel. Top. Quantum Electron., 2010, 16(5):1337-1346.
CHANG Y C, WANG C S, COLDREN L A. High-efficiency, high-speed VCSELs with 35 Gbit=s error-free operation[J].Electron. Lett., 2007, 43(19):1022-1023.
HOFMANN W, MOSER P, WOLF P, et al.. 44 Gb/s VCSEL for optical interconnects[C].Proceedings of 2011Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 2011: 1-3.
WOLF P, MOSER P, LARISCH G, et al.. High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects[J].IEEE J. Sel. Top. Quantum Electron., 2013, 19(4):1701207-1-7.
MOSER P, LOTT J A, WOLF P, et al.. Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85℃[J].Electron. Lett., 2014, 50(19):1369-1371.
ROSALES R, ZORN M, LOTT J A. 30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs[J].IEEE Photoics Technol. Lett., 2017, 29(23):2107-2110.
HAGHIGHI N, ROSALES R, LARISCH G, et al.. Simplicity VCSELs[C].Proceedings of SPIE 10552, Vertical-cavity Surface-emitting Lasers ⅩⅫ, San Francisco, CA, USA, 2018: 105520N.
HAGHIGHI N, LARISCH G, ROSALES R, et al.. 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs[C].Proceedings of 2018IEEE International Semiconductor Laser Conference, Santa Fe, NM, USA, 2018: 1-2.
SUZUKI N, HATAKEYAMA H, FUKATSU F, et al.. 25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections[C].Proceedings of Optical Fiber Communication Conference 2006, Anaheim, CA, USA, 2006: OFA4-1-3.
YASHIKI K, SUZUKI N, FUKATSU K, et al.. 1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers[J].IEEE Photonics Technol. Lett., 2007, 19(23):1883-1885.
ANAN T, SUZUKI N, YASHIKI K, et al.. High-speed 1.1-μm-range InGaAs VCSELs[C].Proceedings of 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, San Diego, CA, USA, 2008: 1-3.
LARSSON A G, GUSTAVSSON J S, HAGLUND E, et al.. VCSEL modulation speed: status and prospects[C].Proceedings of SPIE 10938, Vertical-cavity Surface-emitting Lasers ⅩⅩⅢ, San Francisco, CA, USA, 2019: 1093802.
张建, 宁永强, 张建伟, 等.微型铷原子钟专用795 nm垂直腔表面发射激光器[J].光学精密工程, 2014, 22(1):50-57.
ZHANG J, NING Y Q, ZHANG J W, et al.. 795 nm VCSELs for 87Rb based miniaturized atomic clock[J].Opt. Precision Eng., 2014, 22(1):50-57. (in Chinese)
KITCHING J, KNAPPE S, VUKICEVIC N, et al.. A microwave frequency reference based on VCSEL-driven dark line resonances in Cs vapor[J].IEEE Trans. Instrum. Meas., 2000, 49(6):1313-1317.
DEBERNARDI P, UNOLD H J, MAEHNSS J, et al.. Single-mode, single-polarization VCSELs via elliptical surface etching:experiments and theory[J].IEEE J. Sel. Top. Quantum Electron., 2003, 9(5):1394-1405.
OSTERMANN J M, DEBERNARDI P, JALICS C, et al.. Polarization-stable oxide-confined VCSELs with enhanced single-mode output power via monolithically integrated inverted grating reliefs[J].IEEE J. Sel. Top. Quantum Electron., 2005, 11(5):982-989.
KEELER G A, GEIB K M, SERKLAND D K, et al.. VCSEL polarization control for chip-scale atomic clocks[R]. Albuquerque: Sandia National Laboratories, 2007.
WAHL D, SETZ D S, AL-SAMANEH A. Development of VCSELs for atomic clock applications: annual report of institute of optoelectronics, Ulm university[R]. Ulm: Institute of Optoelectronics, Ulm University, 2008: 49-54.
DEREBEZOV I A, HAISLER V A, BAKAROV A K, et al.. Single-mode vertical-cavity surface-emitting lasers for atomic clocks[J].Optoelectron. Instrum. Data Process., 2009, 45(4):361-366.
GRUET F, AL-SAMANEH A, KROEMER E, et al.. Metrological characterization of custom-designed 894.6 nm VCSELs for miniature atomic clocks[J].Opt. Express, 2013, 21(5):5781-5792.
WATKINS L S, GHOSH C, SEURIN J F, et al.. High power VCSEL devices for atomic clock applications[C].Proceedings of SPIE 9616, Nanophotonics and Macrophotonics for Space Environments ⅠⅩ, San Diego, CA, USA, 2015: 96160J.
ZAOURIS D, KNAPP M, HAJI M, et al.. MacV: VCSELs for miniature atomic clocks[C].Proceedings of 2019 Joint Conference of The IEEE International Frequency Control Symposium and European Frequency and Time Forum, Orlando, USA, 2019: 1-2.
赵军, 秦丽, 闫树斌, 等.基于CPT原子钟的VCSEL激光器控制系统设计[J].电子设计工程, 2009, 17(8):118-119.
ZHAO J, QIN L, YAN S B, et al.. Design of VCSEL laser control system based on CPT atomic clock[J].Electron. Des. Eng., 2009, 17(8):118-119. (in Chinese)
ZHANG J W, ZHANG X, ZHU H B, et al.. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks[J].Opt. Express, 2015, 23(11):14763-14773.
LIU Y Y, ZHANG X, HUANG Y W, et al.. OPSR enhancement of high-temperature operating shallow-surface grating VCSELs[J].Appl. Opt., 2018, 57(16):4486-4490.
PANG W, PAN G Z, WANG Q H, et al.. 894.6 nm VCSEL for Cs-based atomic clocks with triangular holey structure[C].Proceedings of The 20203rd International Conference on Electron Device and Mechanical Engineering, Suzhou, China, 2020: 573-575.
CHI K L, HSIEH D H, YEN J L, et al.. 850-nm VCSELs with p-type δ-doping in the active layers for improved high-speed and high-temperature performance[J].IEEE J. Quantum Electron., 2016, 52(11):2400607.
CHENG J L, SHIEH C L, HUANG X D, et al.. Efficient CW lasing and high-speed modulation of 1.3-μm AlGaInAs VCSELs with good high temperature lasing performance[J].IEEE Photonics Technol. Lett., 2005, 17(1):7-9.
SODERBERG E, GUSTAVSSON J S, MODH P, et al.. High-temperature dynamics, high-speed modulation, and transmission experiments using 1.3-μm InGaAs single-mode VCSELs[J].J. Lightw. Technol., 2007, 25(9):2791-2798.
HATAKEYAMA H, ANAN T, AKAGAWA T, et al.. Highly reliable high-speed 1.1-μm-range VCSELs with InGaAs/GaAsP-MQWs[J].IEEE J. Quantum Electron., 2010, 46(6):890-897.
LI H, WOLF P, MOSER P, et al.. Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs[J].IEEE J. Quantum Electron., 2014, 50(8):613-621.
KUCHTA D M, RYLYAKOV A V, SCHOW C L, et al.. A 50 Gb/s NRZ Modulated 850 nm VCSEL transmitter operating error free to 90℃[J].J. Lightw. Technol., 2015, 33(4):802-810.
LARISCH G, MOSER P, LOTT J A, et al.. Large bandwidth, small current density, and temperature stable 980-nm VCSELs[J].IEEE J. Quantum Electron., 2017, 53(6):2400908.
LEDENTSOV N, CHORCHOS L, AGUSTIN M, et al.. 850 nm single-mode VCSEL for error-free 60 Gbit/s OOK operation and transmission through 800 m of multi-mode fiber[C].Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1-3.
周广正, 兰天, 李颖, 等.高温稳定25 Gbit/s 850 nm垂直腔面发射激光器[J].发光学报, 2019, 40(5):630-634.
ZHOU G Z, LAN T, LI Y, et al.. High temperature-stable 25 Gbit/s 850 nm vertical-cavity surface-emitting lasers[J].Chin. J. Lumin., 2019, 40(5):630-634. (in Chinese)
刘安金.单模直调垂直腔面发射激光器研究进展[J].中国激光, 2020, 47(7):0701005-1-16.
LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J].Chin. J. Lasers, 2020, 47(7):0701005-1-16. (in Chinese)
IGA K. Forty years of vertical-cavity surface-emitting laser:invention and innovation[J].Jpn. J. Appl. Phys., 2018, 57(8S2):08PA01-1-7.
Osram. Homogeneous illumination for facial recognition thanks to VCSEL technology from Osram[EB/OL]. (2018-09-13).https: //www.osram.com/os/press/press-releases/homogeneous-illumination-for-facial-recognition-thanks-to-vcsel-technology-from-osram.jsp.
WARREN M E, CARSON R F, JOSEPH J R, et al.. High-speed and scalable high-power VCSEL arrays and their applications[C].Proceedings of SPIE 9381, Vertical-cavity Surface-emitting Lasers ⅪⅩ, San Francisco, CA, USA, 2015: 93810C.
ZHANG J W, NING Y Q, ZHANG X, et al.. 910 nm vertical-cavity surface-emitting laser arrays with 100 W output power level and low driving current[J].Jpn. J. Appl. Phys., 2018, 57(10):100302-1-5.
FANNING T R, MAYNARD J, HELMS C J, et al.. Performance, manufacturability, and qualification advances of high-power VCSEL arrays at Trilumina Corporation[C].Proceedings of SPIE 11300, Vertical-cavity Surface-emitting Lasers ⅩⅩⅣ, San Francisco, CA, USA, 2020: 1130002.
YOSHIDA M, DE ZOYSA M, ISHIZAKI K, et al.. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams[J].Nat. Mater., 2018, 18(2):121-128.
PARK M, BAEK Y, DINARE M, et al.. Hetero-integration enables fast switching time-of-flight sensors for light detection and ranging of scientific reports[R]. Charlottesville: University of Virginia, 2020.
粤讯.瑞识科技发布行业领先3D dToF VCSEL, 光功率提升3倍[EB/OL]. (2020-04-08).https://laser.ofweek.com/2020-04/ART-8110-2400-30435095.htmlhttps://laser.ofweek.com/2020-04/ART-8110-2400-30435095.html.
Azoth Analytics. Global VCSEL market: analysis by device type (single mode, multi-mode), application, end user, by region, by country(2020 edition): opportunities and forecast(2020-2025)[R]. Azoth Analytics, 2020.
Azoth Analytics. VCSEL market by type(single-mode, multimode), material(GaAs, InP, others), wavelength, application(sensing, data communication), industry(consumer electronics, automotive, data center, commercial & industrial), and geography-global forecast to 2025[R]. Azoth Analytics, 2020.
0
Views
1100
下载量
12
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution