浏览全部资源
扫码关注微信
复旦大学化学系 上海市分子催化和功能材料重点实验室,上海 200438
Published:01 August 2021,
Received:02 November 2020,
Revised:26 November 2020,
移动端阅览
JUN LIU, XI-RONG ZHANG, HUAN-MING XIONG. Application of Fluorescent Carbon Dots in Fingerprint Detection. [J]. Chinese journal of luminescence, 2021, 42(8): 1095-1113.
JUN LIU, XI-RONG ZHANG, HUAN-MING XIONG. Application of Fluorescent Carbon Dots in Fingerprint Detection. [J]. Chinese journal of luminescence, 2021, 42(8): 1095-1113. DOI: 10.37188/CJL.20200334.
碳点是一类尺寸在1~10 nm、以碳为主要元素的纳米粒子,因其合成原料广泛、生物安全性高、荧光信号强、光学性质稳定等众多优点在荧光分析检测领域展现出美好的前景。潜指纹是人的手指分泌物留在固体接触面上靠肉眼难以分辨的痕迹,需要经过物理化学处理来增强成像的效果。把荧光碳点应用于潜指纹的增强成像充分发挥了碳点自身的优势,最近几年的研究已经取得一系列进展。本文介绍了潜指纹常见的显现方法,综述了碳点的合成制备、发光机理、在潜指纹检测中的应用、成像机制和功效比较,展望了碳点在潜指纹检测中的不足之处和未来发展方向,为相关领域的研究工作提供了重要的参考。
Carbon dots(CDs) are a type of 1-10 nm nanosized particles with carbon as the main element. They show bright prospects in the field of fluorescence analysis and detection due to its many advantages
such as a wide range of synthetic raw materials
high biological safety
strong fluorescence signal
and stable optical properties. Latent fingerprint detection is a classical and reliable identification technology. Latent fingerprint is the trace of human finger secretions on solid contact surface which is hard to distinguish by naked eye. It needs to be processed by physical chemistry to enhance the imaging effect. The application of fluorescent carbon dots to enhanced imaging of latent fingerprints has given full play to the advantages of carbon dots and a series of advances have been made in recent years. In this paper
the common developing methods of latent fingerprints are introduced
the synthesis and preparation of carbon dots
luminescence mechanism
application in latent fingerprint detection
imaging mechanism and efficiency comparison are summarized. The deficiencies and future development direction of carbon dots in latent fingerprint detection are prospected
which provides an important reference for research work in related fields.
碳点制备荧光指纹检测
carbon dotspreparationfluorescencefingerprint detection
WANG Y Q, WANG J, MA Q Q, et al. Recent progress in background-free latent fingerprint imaging [J].Nano Res., 2018, 11(10): 5499-5518.
ZHANG D J A K. Advances in Biometrics [M].Heidelberg, Berlin, Germany: Springer Verlag, 2006: 213-348.
BÉCUE A. Emerging fields in fingermark (meta) detection—a critical review [J].Anal. Methods, 2016, 8(45): 7983-8003.
MALIK A H, KALITA A, IYER P K. Development of well-preserved, substrate-versatile latent fingerprints by aggregation-induced enhanced emission-active conjugated polyelectrolyte [J].ACS Appl. Mater. Interfaces, 2017, 9(42): 37501-37508.
YAN F, SUN F, ZHANG H, et al. The fluorescence mechanism of carbon dots, and methods for tuning their emission color: a review [J].Microchim. Acta, 2019, 186(8): 1-37.
FERNANDES D, KRYSMANN M J, KELARAKIS A. Carbon dot based nanopowders and their application for fingerprint recovery [J].Chem. Commun., 2015, 51(23): 4902-4905.
RONG M C, FENG Y F, WANG Y R, et al. One-pot solid phase pyrolysis synthesis of nitrogen-doped carbon dots for Fe3+ sensing and bioimaging [J].Sens. Actuators B:Chem., 2017, 245: 868-874.
WANG B, LIU F, WU Y Y, et al. Synthesis of catalytically active multielement-doped carbon dots and application for colorimetric detection of glucose [J].Sens. Actuators B:Chem., 2018, 255: 2601-2607.
WANG Y F, ZHU Y W, YU S M, et al. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications [J].RSC Adv., 2017, 7(65): 40973-40989.
MEI J, LEUNG N L C, KWOK R T K, et al. Aggregation-induced emission: together we shine, united we soar![J].Chem. Rev., 2015, 115(21): 11718-11940.
WANG Y F, ZHANG T B, LIANG X J. Aggregation-induced emission: lighting up cells, revealing life! [J].Small, 2016, 12(47): 6451-6477.
王宝军, 吴睿, 张强, 等. “502”胶显现法指纹检测技术探究[J].广东化工, 2019, 46(17): 15-17.
WANGB J, WU R, ZHANG Q, et al. The study of fingerprint detection technique by using of “502” glue [J].Guangdong Chem. Ind., 2019, 46(17): 15-17. (in Chinese)
CHAMPOD C, LENNARD C J, MARGOT P, et al. Fingerprints and Other Ridge Skin Impressions [M].Boca Raton: CRC Press, 2004.
YANG Y, LIU R H, CUI Q L, et al. Red-emissive conjugated oligomer/silica hybrid nanoparticles with high affinity and application for latent fingerprint detection [J].Colloids Surf. A:Physicochem. Eng. Asp., 2019, 565: 118-130.
ALGARRA M, BARTOLIĆ D, RADOTIĆ K, et al. P-doped carbon nano-powders for fingerprint imaging [J].Talanta, 2019, 194: 150-157.
WU P, XU C Y, HOU X D, et al. Dual-emitting quantum dot nanohybrid for imaging of latent fingerprints: simultaneous identification of individuals and traffic light-type visualization of TNT [J].Chem. Sci., 2015, 6(8): 4445-4450.
WANG L J, GU W H, AN Z B, et al. Shape-controllable synthesis of silica coated core/shell upconversion nanomaterials and rapid imaging of latent fingerprints [J].Sens. Actuators B:Chem., 2018, 266: 19-25.
WANG J K, HE N, ZHU Y L, et al. Highly-luminescent Eu, Sm, Mn-doped CaS up/down conversion nano-particles: application to ultra-sensitive latent fingerprint detection and in vivo bioimaging [J].Chem. Commun., 2018, 54(6): 591-594.
WANG J, MA Q Q, LIU H Y, et al. Time-gated imaging of latent fingerprints and specific visualization of protein secretions via molecular recognition [J].Anal. Chem., 2017, 89(23): 12764-12770.
RAJU G S R, PARK J Y, NAGARAJU G P, et al. Evolution of CaGd2ZnO5∶Eu3+ nanostructures for rapid visualization of latent fingerprints [J].J. Mater. Chem. C, 2017, 5(17): 4246-4256.
LI Z H, WANG Q, WANG Y Q, et al. Background-free latent fingerprint imaging based on nanocrystals with long-lived luminescence and pH-guided recognition [J].Nano Res., 2018, 11(12): 6167-6176.
WANG Y L, LI C, QU H Q, et al. Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission [J].J. Am. Chem. Soc., 2020, 142(16): 7497-7505.
XU L R, LI Y, LI S H, et al. Enhancing the visualization of latent fingerprints by aggregation induced emission of siloles [J].Analyst, 2014, 139(10): 2332-2335.
LI Y, XU L R, SU B. Aggregation induced emission for the recognition of latent fingerprints [J].Chem. Commun., 2012, 48(34): 4109-4111.
SINGH P, SINGH H, SHARMA R, et al. Diphenylpyrimidinone-salicylideneamine—new ESIPT based AIEgens with applications in latent fingerprinting [J].J. Mater. Chem. C, 2016, 4(47): 11180-11189.
SINGH H, SHARMA R, BHARGAVA G, et al. AIE + ESIPT based red fluorescent aggregates for visualization of latent fingerprints [J].New J. Chem., 2018, 42(15): 12900-12907.
JIN X D, DONG L B, DI X Y, et al. NIR luminescence for the detection of latent fingerprints based on ESIPT and AIE processes [J].RSC Adv., 2015, 5(106): 87306-87310.
JIN X D, XIN R, WANG S F, et al. A tetraphenylethene-based dye for latent fingerprint analysis [J].Sens. Actuators B:Chem., 2017, 244: 777-784.
SURESH R, THIYAGARAJAN S K, RAMAMURTHY P. An AIE based fluorescent probe for digital lifting of latent fingerprint marks down to minutiae level [J].Sens. Actuators B:Chem., 2018, 258: 184-192.
MA Z, MING H, HUANG H, et al. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability [J].New J. Chem., 2012, 36(4): 861-864.
XU Y, WU M, LIU Y, et al. Nitrogen-doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications [J].Chem. -Eur. J., 2013, 19(7): 2276-2283.
XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J].J. Am. Chem. Soc., 2004, 126(40): 12736-12737.
SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence [J].J. Am. Chem. Soc., 2006, 128(24): 7756-7757.
CHAN W, ZHOU J D, LULU L, et al. Rapid visualization of latent fingerprints with color-tunable solid fluorescent carbon dots [J].Part. Part. Syst. Charact., 2018, 35(3): 1700387-1-8.
CHEN J, WEI J S, ZHANG P, et al. Red-emissive carbon dots for fingerprints detection by spray method: coffee ring effect and unquenched fluorescence in drying process [J].ACS Appl. Mater. Interfaces, 2017, 9(22): 18429-18433.
ZHAO D, MA W T, XIAO X C. The recognition of sweat latent fingerprints with green-emitting carbon dots [J].Nanomaterials, 2018, 8(8): 612-1-10.
WANG C F, CHENG R, JI W Q, et al. Recognition of latent fingerprints and ink-free printing derived from interfacial segregation of carbon dots [J].ACS Appl. Mater. Interfaces, 2018, 10(45): 39205-39213.
ZHOU J G, BOOKER C, LI R Y, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs) [J].J. Am. Chem. Soc., 2007, 129(4): 744-745.
LIU H P, YE T, MAO C D. Fluorescent carbon nanoparticles derived from candle soot [J].Angew. Chem. Int. Ed., 2007, 46(34): 6473-6475.
BOURLINOS A B, STASSINOPOULOS A, ANGLOS D, et al. Surface functionalized carbogenic quantum dots [J].Small, 2008, 4(4): 455-458.
KRYSMANN M J, KELARAKIS A, DALLAS P, et al. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission [J].J. Am. Chem. Soc., 2012, 134(2): 747-750.
WANG F, KREITER M, HE B, et al. Synthesis of direct white-light emitting carbogenic quantum dots [J].Chem. Commun., 2010, 46(19): 3309-3311.
YANG Z C, WANG M, YONG A M, et al. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate [J].Chem. Commun., 2011, 47(42): 11615-11617.
SAHU S, BEHERA B, MAITI T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents [J].Chem. Commun., 2012, 48(70): 8835-8837.
MEHTA V N, JHA S, BASU H, et al. One-step hydrothermal approach to fabricate carbon dots from apple juice for imaging of mycobacterium and fungal cells [J].Sens. Actuators B:Chem., 2015, 213: 434-443.
SONG P, ZHANG L S, LONG H, et al. A multianalyte fluorescent carbon dots sensing system constructed based on specific recognition of Fe(Ⅲ) ions [J].RSC Adv., 2017, 7(46): 28637-28646.
ALAM A M, PARK B Y, GHOURI Z K, et al. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: excellent imaging agent for biomedical applications [J].Green Chem., 2015, 17(7): 3791-3797.
HSU P C, CHANG H T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: role of functional groups [J].Chem. Commun., 2012, 48(33): 3984-3986.
ZHU H, WANG X L, LI Y L, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J].Chem. Commun., 2009, (34): 5118-5120.
ZHAI X Y, ZHANG P, LIU C J, et al. Highly luminescent carbon nanodots by microwave-assisted pyrolysis [J].Chem. Commun., 2012, 48(64): 7955-7957.
CHANDRA S, DAS P, BAG S, et al. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles [J].Nanoscale, 2011, 3(4): 1533-1540.
QU S N, WANG X Y, LU Q P, et al. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots [J].Angew. Chem. Int. Ed., 2012, 51(49): 12215-12218.
JIANG J, HE Y, LI S Y, et al. Amino acids as the source for producing carbon nanodots: microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement [J].Chem. Commun., 2012, 48(77): 9634-9636.
TANG L B, JI R B, CAO X K, et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots [J].ACS Nano, 2012, 6(6): 5102-5110.
SUN S, ZHANG L, JIANG K, et al. Toward high-efficient red emissive carbon dots: facile preparation, unique properties, and applications as multifunctional theranostic agents [J].Chem. Mater., 2016, 28(23): 8659-8668.
LIU R L, WU D Q, LIU S H, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J].Angew. Chem. Int. Ed., 2009, 48(25): 4598-4601.
GU Z G, LI D J, ZHENG C, et al. MOF-templated synthesis of ultrasmall photoluminescent carbon-nanodot arrays for optical applications [J].Angew. Chem. Int. Ed., 2017, 56(24): 6853-6858.
DING H, ZHANG P, WANG T Y, et al. Nitrogen-doped carbon dots derived from polyvinyl pyrrolidone and their multicolor cell imaging [J].Nanotechnology, 2014, 25(20): 205604.
YANG S T, WANG X, WANG H F, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents [J].J. Phys. Chem. C, 2009, 113(42): 18110-18114.
HU S L, NIU K Y, SUN J, et al. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J].J. Mater. Chem., 2009, 19(4): 484-488.
CAO L, WANG X, MEZIANI M J, et al. Carbon dots for multiphoton bioimaging [J].J. Am. Chem. Soc., 2007, 129(37): 11318-11319.
WANG X, CAO L, LU F S, et al. Photoinduced electron transfers with carbon dots [J].Chem. Commun., 2009, (25): 3774-3776.
LI H T, HE X D, KANG Z H, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J].Angew. Chem. Int. Ed., 2010, 49(26): 4430-4434.
BAO L, ZHANG Z L, TIAN Z Q, et al. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism [J].Adv. Mater., 2011, 23(48): 5801-5806.
LI Y, HU Y, ZHAO Y, et al. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics [J].Adv. Mater., 2011, 23(6): 776-780.
ZHAO Q L, ZHANG Z L, HUANG B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J].Chem. Commun., 2008, (41): 5116-5118.
LI J Y, LIU Y, SHU Q W, et al. One-pot hydrothermal synthesis of carbon dots with efficient Up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay [J].Langmuir, 2017, 33(4): 1043-1050.
SONG Y B, ZHU S J, ZHANG S T, et al. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine [J].J. Mater. Chem. C, 2015, 3(23): 5976-5984.
LI L P, LU C X, LI S J, et al. A high-yield and versatile method for the synthesis of carbon dots for bioimaging applications[J].J. Mater. Chem. B, 2017, 5(10): 1935-1942.
CHANDRA S, MAHTO T K, CHOWDHURI A R, et al. One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (Ⅲ) [J].Sens. Actuators B:Chem., 2017, 245: 835-844.
ZHOU Y Q, DESSERRE A, SHARMA S K, et al. Gel-like carbon dots: characterization and their potential applications [J].ChemPhysChem, 2017, 18(8): 890-897.
ZHOU Y Q, LIYANAGE P Y, GELEROFF D L, et al. Photoluminescent carbon dots: a mixture of heterogeneous fractions [J].ChemPhysChem, 2018, 19(19): 2589-2597.
TAO S Y, SONG Y B, ZHU S J, et al. A new type of polymer carbon dots with high quantum yield: from synthesis to investigation on fluorescence mechanism [J].Polymer, 2017, 116: 472-478.
DING H, YU S B, WEI J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J].ACS Nano, 2016, 10(1): 484-491.
MINTZ K J, MERCADO G, ZHOU Y Q, et al. Tryptophan carbon dots and their ability to cross the blood-brain barrier [J].Colloid Surf. B:Biointerfaces, 2019, 176: 488-493.
PERELSHTEIN I, PERKAS N, RAHIMIPOUR S, et al. Bifunctional carbon dots-magnetic and fluorescent hybrid nanoparticles for diagnostic applications [J].Nanomaterials, 2020, 10(7): 1384-1-8.
ZHENG B Z, LIU T, PAAU M C, et al. One pot selective synthesis of water and organic soluble carbon dots with green fluorescence emission [J].RSC Adv., 2015, 5(15): 11667-11675.
YANG W Q, NI J C, LUO F, et al. Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay [J].Anal. Chem., 2017, 89(16): 8384-8390.
WANG M N, ZHENG B Z, YANG F, et al. Synthesis of “amphiphilic” carbon dots and their application for the analysis of iodine species (I2, I- and I3-) in highly saline water [J].Analyst, 2016, 141(8): 2508-2514.
LI Y S, ZHONG X X, RIDER A E, et al. Fast, energy-efficient synthesis of luminescent carbon quantum dots [J].Green Chem., 2014, 16(5): 2566-2570.
GE J C, JIA Q Y, LIU W M, et al. Red-emissive carbon dots for fluorescent, photoacoustic, and thermal theranostics in living mice [J].Adv. Mater., 2015, 27(28): 4169-4177.
YUAN F L, WANG Z B, LI X H, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J].Adv. Mater., 2017, 29(3): 1604436-1-6.
ZHU S J, MENG Q N, WANG L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J].Angew. Chem. Int. Ed., 2013, 52(14): 3953-3957.
TETSUKA H, ASAHI R, NAGOYA A, et al. Optically tunable amino-functionalized graphene quantum dots [J].Adv. Mater., 2012, 24(39): 5333-5338.
BAO L, LIU C, ZHANG Z L, et al. Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning [J].Adv. Mater., 2015, 27(10): 1663-1667.
DONG Y Q, PANG H C, YANG H B, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission [J].Angew. Chem. Int. Ed., 2013, 52(30): 7800-7804.
PAN D Y, ZHANG J C, LI Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots [J].Adv. Mater., 2010, 22(6): 734-738.
CHEN Y Q, LIAN H Z, WEI Y, et al. Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers [J].Nanoscale, 2018, 10(14): 6734-6743.
CHOI Y, KANG B, LEE J, et al. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots [J].Chem. Mater., 2016, 28(19): 6840-6847.
ZHU S J, ZHANG J H, LIU X, et al. Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission [J].RSC Adv., 2012, 2(7): 2717-2720.
WANG L, ZHU S J, WANG H Y, et al. Common origin of green luminescence in carbon nanodots and graphene quantum dots [J].ACS Nano, 2014, 8(3): 2541-2547.
FENG R Q, YUAN Z Y, REN T Z. A facile hydrothermal method for preparation of fluorescent carbon dots on application of Fe3+ and fingerprint detection [J].Methods Appl. Fluoresc., 2019, 7(3): 035001.
DONG X Y, NIU X Q, ZHANG Z Y, et al. Red Fluorescent carbon dot powder for accurate latent fingerprint identification using an artificial intelligence program [J].ACS Appl. Mater. Interfaces, 2020, 12(26): 29549-29555.
LI G M, WANG X, ZHANG J L. Carbon dots for promoting the growth of ZIF-8 crystals to obtain fluorescent powders and their application for latent fingerprint imaging [J].CrystEngComm, 2018, 20(34): 5056-5060.
ZHAI Y C, SHEN F Z, ZHANG X T, et al. Synthesis of green emissive carbon dots@montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers [J].J. Colloid Interface Sci., 2019, 554: 344-352.
KUMARI R, PAL K, KARMAKAR P, et al. pH-responsive mn-doped carbon dots for white-light-emitting diodes, fingerprinting, and bioimaging [J].ACS Appl. Nano Mater., 2019, 2(9): 5900-5909.
REN G J, MENG Y X, ZHANG Q, et al. Nitrogen-doped carbon dots for the detection of mercury ions in living cells and visualization of latent fingerprints [J].New J. Chem., 2018, 42(9): 6824-6830.
WANG H J, YU T T, CHEN H L, et al. A self-quenching-resistant carbon dots powder with tunable solid-state fluorescence and their applications in light-emitting diodes and fingerprints detection [J].Dyes Pigments, 2018, 159: 245-251.
WANG H J, HOU W Y, YU T T, et al. Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes [J].Dyes Pigments, 2019, 170: 107623.
ZHOU J D, WANG C, ZHAO Y, et al. Detection of latent fingerprints based on gas phase adsorption of NO and subsequent application of an ultrasonically nebulized fluorescent probe [J].Anal. Methods, 2017, 9(10): 1611-1616.
HAMAI K, TAKENAKA N, NANZAI B, et al. Influence of adding salt on ultrasonic atomization in an ethanol-water solution [J].Ultrason. Sonochem., 2009, 16(1): 150-154.
JIANG B P, YU Y X, GUO X L, et al. White-emitting carbon dots with long alkyl-chain structure: effective inhibition of aggregation caused quenching effect for label-free imaging of latent fingerprint [J].Carbon, 2018, 128: 12-20.
LI R S, LIU J H, YANG T, et al. Carbon quantum dots-europium(Ⅲ) energy transfer architecture embedded in electrospun nanofibrous membranes for fingerprint security and document counterspy [J].Anal. Chem., 2019, 91(17): 11185-11191.
0
Views
1520
下载量
6
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution