Si-hong LI, Xiang HOU, Rong-huang LUO, et al. Effect of SiO2 Patterned Sapphire Substrate on GaN Growth and LED Luminescence Performance. [J]. Chinese Journal of Luminescence 42(4):526-533(2021)
DOI:
Si-hong LI, Xiang HOU, Rong-huang LUO, et al. Effect of SiO2 Patterned Sapphire Substrate on GaN Growth and LED Luminescence Performance. [J]. Chinese Journal of Luminescence 42(4):526-533(2021) DOI: 10.37188/CJL.20200327.
Effect of SiO2 Patterned Sapphire Substrate on GaN Growth and LED Luminescence Performance
To improve the luminescence performance of gallium nitride(GaN)-based light-emitting diodes(LEDs)
a SiO
2
film was deposited on sapphire substrates by the plasma-enhanced chemical vapor deposition(PECVD) in this study. After depositing the SiO
2
film
a SiO
2
patterned sapphire substrate(SPSS) was prepared through photolithography and dry etching
and a GaN-based LED device with SPSS was obtained by using epitaxial growth and micro-nano processing technology of the LED device. The effect of SPSS on the crystal quality of the GaN epitaxial layer
the light extraction efficiency
and the performance of the LED device were investigated. The experimental and simulation results show that
compared to the conventional patterned sapphire substrates(CPSS)
the GaN epitaxial layer grown on SPSS had lower dislocation density and higher crystal quality
and the light extraction efficiency of SPSS-LED was increased by 26%
as well as that the light output power and brightness of SPSS-LED were both increased by about 5%.
ZHAO Y, XU S R, ZHANG J C, et al. Optical properties evolution of GaN film grown via lateral epitaxial overgrowth [J].Appl. Surf. Sci., 2020, 513:145816.
HE X G, ZHAO D G, JIANG D S, et al. GaN high electron mobility transistors with AlInN back barriers [J].J. Alloys Compd., 2016, 662:16-19.
TARAUNI Y U, THIRUVADIGAL D J, JOSEPH H B. Characterization and optimization of MIS-HEMTs device of highk dielectric material on quaternary barrier of Al0.42ln0.03Ga0.55N/UID-AIN/GaN/GaN heterostructure for high power switching application [J].Appl. Surf. Sci., 2019, 488:427-433.
LIU W P, LI Y Q, FANG W Q, et al. The Junction-temperature characteristic of GaN light-emitting diodes on Si substrate [J].Chin. J. Lumin., 2006, 27(2):211-214. (in Chinese)
CHEN Y, WANG W X, LI Y, et al. High quality GaN layers grown on SiC substrates with AlN buffers by metalorganic chemical vapor deposition [J].Chin. J. Lumin., 2011, 32(9):896-901. (in Chinese)
ABELL J, MOUSTAKAS T D. The role of dislocations as nonradiative recombination centers in InGaN quantum wells [J].Appl. Phys. Lett., 2008, 92(9):091901-1-3.
YOU J H, LU J Q, JOHNSON H T. Electron scattering due to threading edge dislocations in n-type wurtzite GaN [J].J. Appl. Phys., 2006, 99(3):033706-1-10.
XU Y, SU X J, CAO B, et al. In-plane misfits' localization in GaN via graphene-ELOG technology [J].CrystEngComm, 2019, 21(5):902-907.
WIERER J J, KRAMES M R, EPLER J E, et al. InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures [J].Appl. Phys. Lett., 2004, 84(19):3885-3887.
FUJII T, GAO Y, SHARMA R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening [J].Appl. Phys. Lett., 2004, 84(6):855-857.
WU H Y, XU S R, FENG L S, et al. Patterned sapphire substrates cause a wavelength shift of green InGaN light-emitting diodes [J].Opt. Mater. Express, 2020, 10(9):2045-2053.
LEE Y J, HWANG J M, HSU T C, et al. Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates [J].IEEE Photonics Technol. Lett., 2006, 18(10):1152-1154.
LEE Y C, YEH S C, CHOU Y Y, et al. High-efficiency InGaN-based LEDs grown on patterned sapphire substrates using nanoimprinting technology [J].Microelectron. Eng., 2013, 105:86-90.
LIN Y S, YEH J A. GaN-based light-emitting diodes grown on nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures [J].Appl. Phys. Express, 2011, 4(9):092103-1-3.
UEDA K, TSUCHIDA Y, HAGURA N, et al. High performance of GaN thin films grown on sapphire substrates coated with a silica-submicron-sphere monolayer film [J].Appl. Phys. Lett., 2008, 92(10):101101-1-3.
LI Q M, FIGIEL J J, WANG G T. Dislocation density reduction in GaN by dislocation filtering through a self-assembled monolayer of silica microspheres [J].Appl. Phys. Lett., 2009, 94(23):231105-1-3.
HEYING B, WU X H, KELLER S, et al. Role of threading dislocation structure on the X-ray diffraction peak widths in epitaxial GaN films [J].Appl. Phys. Lett., 1996, 68(5):643-645.
SRIKANT V, SPECK J S, CLARKE D R. Mosaic structure in epitaxial thin films having large lattice mismatch [J].J. Appl. Phys., 1997, 82(9):4286-4295.
WANG M T, LIAO K Y, LI Y L. Growth mechanism and strain variation of GaN material grown on patterned sapphire substrates with various pattern designs [J].IEEE Photonics Technol. Lett., 2011, 23(14):962-964.
GRADEČAK S, STADELMANN P, WAGNER V, et al. Bending of dislocations in GaN during epitaxial lateral overgrowth [J].Appl. Phys. Lett., 2004, 85(20):4648-4650.
SCHENK H P D, VENNÉGUÈS P, TOTTEREAU O, et al. Three-dimensionally nucleated growth of gallium nitride by low-pressure metalorganic vapour phase epitaxy [J].J. Cryst. Growth, 2003, 258(3-4):232-250.
WANG H Y, XU H, HUANG T T, et al. Thermodynamics of wurtzite GaN from first-principle calculation [J].Eur. Phys. J. B, 2008, 62(1):39-43.
WEBER M J. Handbook of Optical Materials [M].Florida:CRC Press, 2003.
PALIK E D. Handbook of Optical Constants of Solids [M].Washington:Academic Press, 1985.
BENISTY H, STANLEY R, MAYER M. Method of source terms for dipole emission modification in modes of arbitrary planar structures [J].J. Opt. Soc. Am. A, 1998, 15(5):1192-1201.