浏览全部资源
扫码关注微信
安徽大学 化学与化工学院, 安徽 合肥 230601
Published:2020-12,
Received:21 October 2020,
Accepted:2020-11-2
移动端阅览
JIA-HUI XU, CHEN DONG, HAI-ZHEN DING, et al. Synthesis, Luminescence Mechanism and Applications of Carbon Dots with Afterglow. [J]. Chinese journal of luminescence, 2020, 41(12): 1567-1578.
JIA-HUI XU, CHEN DONG, HAI-ZHEN DING, et al. Synthesis, Luminescence Mechanism and Applications of Carbon Dots with Afterglow. [J]. Chinese journal of luminescence, 2020, 41(12): 1567-1578. DOI: 10.37188/CJL.20200318.
近年来,碳点(Carbon dots,CDs)材料的余辉现象引起了人们强烈的兴趣。与传统的有机化合物或无机化合物余辉材料相比,余辉CDs不仅保留了碳材料良好的生物相容性和低毒性的特点,而且还具有发光颜色可调、易制备、性能稳定且不含贵金属等优点,因此在信息加密、生物成像和离子检测等领域具有广阔的应用前景。本文首先从受限体系和本征发射体系这两方面,总结了近年来余辉CDs的合成方法,并对CDs的余辉发射机理进行了简要介绍;然后详细阐述了余辉CDs在防伪、信息加密、传感和生物成像等领域的应用情况;最后,对如何进一步优化CDs的合成策略及如何研发出具有更大实用价值的余辉CDs材料进行了一些思考。
In recent years
the afterglow phenomenon of carbon dots(CDs) has aroused broad research interest. Compared with the traditional organic compounds or inorganic coordination compounds with afterglow
the CDs not only retain the classical characteristics of carbon materials such as good biocompatibility and low toxicity
but also own the advantages such as adjustable
luminous color
easy preparation
photostable properties and containing no heavy metals. Therefore
the CDs with afterglow have important application prospects in the areas of information encryption
biological imaging and ion detection
etc
. This paper summarizes the synthesis methods of afterglow CDs in recent years from two aspects of restricted system and intrinsic emission system
and then briefly introduces the mechanism of afterglow emission of CDs
after that addresses the application of afterglow CDs in the fields of anti-counterfeiting
information encryption
sensing and biological imaging in detail. Finally
some ideas on how to optimize the synthetic strategy of CDs and further develop more practical usages of afterglow CDs are proposed.
碳点余辉合成机理应用室温磷光
carbon dotsafterglowsynthesismechanismapplicationroom-temperature phosphorescence
XU X Y, RAY R, GU Y L, et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J].J. Am. Chem. Soc., 2004, 126(40):12736-12737.
LI H T, HE X D, KANG Z H, et al.. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J].Angew. Chem. Int. Ed., 2010, 49(26):4430-4434.
LIU R L, WU D Q, LIU S H, et al.. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J].Angew. Chem. Int. Ed., 2009, 48(25):4598-4601.
BAO L, LIU C, ZHANG Z L, et al.. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning[J].Adv. Mater., 2015, 27(10):1663-1667.
PAN L L, SUN S, ZHANG A D, et al.. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J].Adv. Mater., 2015, 27(47):7782-7787.
HU S L, TRINCHI A, ATKIN P, et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J].Angew. Chem. Int. Ed., 2015, 54(10):2970-2974.
TIAN Z, ZHANG X T, LI D, et al.. Full-color inorganic carbon dot phosphors for white-light-emitting diodes[J].Adv. Opt. Mater., 2017, 5(19):1700416-1-9.
DING H, WEI J S, ZHONG N, et al.. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging[J].Langmuir, 2017, 33(44):12635-12642.
MIAO X, QU D, YANG D X, et al.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J].Adv. Mater., 2018, 30:1704740-1-8.
WU H, CHEN Y, DAI X Y, et al.. In situ photoconversion of multicolor luminescence and pure white light emission based on carbon dot-supported supramolecular assembly[J].J. Am. Chem. Soc., 2019, 141(16):6583-6591.
LIU JJ, GENG Y J, LI D W, et al.. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum[J].Adv. Mater., 2020, 32(17):1906641.
GAO D, ZHANG Y S, LIU A M, et al.. Photoluminescence-tunable carbon dots from synergy effect of sulfur doping and water engineering[J].Chem. Eng. J., 2020, 388:124199.
JIANG L, DING H Z, LU S Y, et al.. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior[J].Angew. Chem. Int. Ed., 2020, 59(25):9986-9991.
JIANG L, DING H Z, XU M S, et al.. UV-Vis-NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo [J].Small, 2020, 16(19):2000680.
LI D, JING P T, SUN L H, et al.. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J].Adv. Mater., 2018, 30(13):1705913-1-8.
王晓筠, 李波, 陈力, 等.应用于生物医疗领域的碳纳米点及其复合物[J].中国光学, 2018, 11(3):401-419.
WANG X Y, LI B, CHEN L, et al.. Carbon nanodots and their composites for biomedical applications[J].Chin. Opt., 2018, 11(3):401-419. (in Chinese)
郭振振, 唐玉国, 孟凡渝, 等.荧光碳量子点的制备与生物医学应用研究进展[J].中国光学, 2018, 11(3):431-443.
GUO Z Z, TANG Y G, MENG F Y, et al.. Advances in preparation and biomedical applications of fluorescent carbon quantum dots[J].Chin. Opt., 2018, 11(3):431-443. (in Chinese)
于淑娟, 陈宽, 汪丰, 等.壳聚糖基聚合物碳点荧光材料合成及其自组装载药应用[J].中国光学, 2018, 11(3):420-430.
YU S J, CHEN K, WANG F, et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading[J].Chin. Opt., 2018, 11(3):420-430. (in Chinese)
娄庆, 曲松楠.基于超级碳点的水致荧光"纳米炸弹"[J].中国光学, 2015, 8(1):91-98.
LOU Q, QU S N. Water triggered luminescent "nano-bombs" based on supra-carbon-nanodots[J].Chin. Opt., 2015, 8(1):91-98. (in Chinese)
李迪, 孟李, 曲松楠.氮掺杂碳纳米点的研究进展[J].中国光学, 2020, 13(5):899-918.
LI D, MENG L, QU S N. Research progress on nitrogen-doped carbon nanodots[J].Chin. Opt., 2020, 13(5):899-918. (in Chinese)
ZHANG X Y, ZHANG Y, WANG Y, et al.. Color-switchable electroluminescence of carbon dot light-emitting diodes[J].ACS Nano, 2013, 7(12):11234-11241.
YUAN F L, WANG Z B, LI X H, et al.. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J].Adv. Mater., 2017, 29(3):1604436-1-6.
JIA H R, WANG Z B, YUAN T, et al.. Electroluminescent warm white light-emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots[J].Adv. Sci., 2019, 6(13):1900397-1-10.
SHEN C L, LOU Q, ZANG J H, et al.. Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging[J].Adv. Sci., 2020, 7(8):1903525-1-8.
WANG D M, LIN K L, HUANG C Z. Carbon dots-involved chemiluminescence:recent advances and developments[J].Luminescence, 2019, 34(1):4-22.
SHEN C L, LOU Q, LV C F,et al.. Bright and multicolor chemiluminescent carbon nanodots for advanced information encryption[J].Adv. Sci., 2019, 6(11):1802331-1-9.
LI D, LIANG C, USHAKOVA E V, et al.. Thermally activated upconversion near-infrared photoluminescence from carbon dots synthesized via microwave assisted exfoliation[J].Small, 2019, 15(50):1905050.
TAN H H, GONG G, XIE S W, et al.. Upconversion nanoparticles@carbon dots@Meso-SiO2 sandwiched core-shell nanohybrids with tunable dual-mode luminescence for 3D anti-counterfeiting barcodes[J].Langmuir, 2019, 35(35):11503-11511.
LIU K K, SONG S Y, SUI L Z, et al.. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence[J].Adv. Sci., 2019, 6(17):1900766-1-10.
LU S Y, SUI L Z, LIU J J, et al.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J].Adv. Mater., 2017, 29(15):1603443-1-6.
WANG B Y, LI J, TANG Z Y, et al.. Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes[J].Sci. Bull., 2019, 64(17):1285-1292.
JIANG B, LIANG Y R, YU X Y, et al.. Facile synthesis of FeCO3/nitrogen-doped carbon dot composites for lithium-ion battery anodes[J].J. Alloys Compd., 2020, 838:155508.
ZHU Y R, LI J Y, YUN X R, et al.. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries[J].Nano-Micro Lett., 2020, 12:16.
LIU J, LIU Y, LIU N Y, et al.. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway[J].Science, 2015, 347(6225):970-974.
WANG J M, ZHANG X, WU J, et al.. Preparation of Bi2S3/carbon quantum dot hybrid materials with enhanced photocatalytic properties under ultraviolet-, visible- and near infrared-irradiation[J].Nanoscale, 2017, 9(41):15873-15882.
SUN J H, XIN Q, YANG Y, et al.. Nitrogen-doped graphene quantum dots coupled with photosensitizers for one-/two-photon activated photodynamic therapy based on a FRET mechanism[J].Chem. Commun., 2018, 54(7):715-718.
LUO Q H, DING H Z, HU X L, et al.. Sn4+ complexation with sulfonated-carbon dots in pursuit of enhanced fluorescence and singlet oxygen quantum yield[J].Dalton Trans., 2020, 49(21):6950-6956.
马青兰, 黄远明.绿色长余辉铝酸盐在信息显示领域的应用探索[J].液晶与显示, 2010, 25(3):325-328.
MA Q L, HUANG Y M. Application of green aluminates phosphors in information display field[J].Chin. J. Liq. Cryst. Disp., 2010, 25(3):325-328. (in Chinese)
HE J L, HE Y L, CHEN Y H, et al.. Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence[J].Chem. Eng. J., 2018, 347:505-513.
DENG Y H, ZHAO D X, CHEN X, et al.. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J].Chem. Commun., 2013, 49(51):5751-5753.
TAN J, ZOU R, ZHANG J, et al.. Large-scale synthesis of N-doped carbon quantum dots and their phosphorescence properties in a polyurethane matrix[J].Nanoscale, 2016, 8(8):4742-4747.
TAN J, ZHANG J, LI W, et al.. Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications[J].J. Mater. Chem. C, 2016, 4(42):10146-10153.
JIANG K, ZHANG L, LU J F, et al.. Triple-mode emission of carbon dots:applications for advanced anti-counterfeiting[J].Angew. Chem. Int. Ed., 2016, 55(25):7231-7235.
GOU H L, LIU Y F, ZHANG G Y, et al.. Lifetime-tunable room-temperature phosphorescence of polyaniline carbon dots in adjustable polymer matrices[J].Nanoscale, 2019, 11(39):18311-18319.
GAO Y F, ZHANG H L, JIAO Y, et al.. Strategy for activating room-temperature phosphorescence of carbon dots in aqueous environments[J].Chem. Mater., 2019, 31(19):7979-7986.
TAN J, YI Z Z, YE Y X, et al.. Achieving red room temperature afterglow carbon dots in composite matrices through chromophore conjugation degree controlling[J].J. Lumin., 2020, 223:117267.
LI Q J, ZHOU M, YANG Q F, et al.. Efficient room-temperature phosphorescence from nitrogen-doped carbon dots in composite matrices[J].Chem. Mater., 2016, 28(22):8221-8227.
LI Q J, ZHOU M, YANG M Y, et al.. Induction of long-lived room temperature phosphorescence of carbon dots by water in hydrogen-bonded matrices[J].Nat. Commun., 2018, 9:734-1-8.
LIN C J, ZHUANG Y X, LI W H, et al.. Blue, green, and red full-color ultralong afterglow in nitrogen-doped carbon dots[J].Nanoscale, 2019, 11(14):6584-6590.
LIU J C, WANG N, YU Y, et al.. Carbon dots in zeolites:a new class of thermally activated delayed fluorescence materials with ultralong lifetimes[J].Sci. Adv., 2017, 3(5):e1603171.
JIANG K, WANG Y H, CAI C Z, et al.. Activating room temperature long afterglow of carbon dots via covalent fixation[J].Chem. Mater., 2017, 29(11):4866-4873.
DIAZ-TORRES L A, GOMEZ-SOLIS C, OLIVA J, et al.. Long-lasting green, yellow, and red phosphorescence of carbon dots embedded on ZnAl2O4 nanoparticles synthesized by a combustion method[J].J. Phys. D Appl. Phys., 2018, 51(41):415104.
SHI W Y, YAO J, BAI L Q, et al.. Defect-stabilized triplet state excitons:toward ultralong organic room-temperature phosphorescence[J].Adv. Funct. Mater., 2018, 28(52):1804961-1-8.
LI W, ZHOU W, ZHOU Z S, et al.. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J].Angew. Chem. Int. Ed., 2019, 58(22):7278-7283.
WANG B L, YU Y, ZHANG H Y, et al.. Carbon dots in a matrix:energy-transfer-enhanced room-temperature red phosphorescence[J].Angew. Chem. Int. Ed., 2019, 58(51):18443-18448.
WANG C, CHEN Y Y, HU T T, et al.. Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources via a molten salt method[J].Nanoscale, 2019, 11(24):11967-11974.
GREEN D C, HOLDEN M A, LEVENSTEIN M A, et al.. Controlling the fluorescence and room-temperature phosphorescence behaviour of carbon nanodots with inorganic crystalline nanocomposites[J].Nat. Commun., 2019, 10:206.
DENG Y C, LI P, JIANG H Y, et al.. Tunable afterglow luminescence and triple-mode emissions of thermally activated carbon dots confined within nanoclays[J].J. Mater. Chem. C, 2019, 7(43):13640-13646.
LIU J C, ZHANG H Y, WANG N, et al.. Template-modulated afterglow of carbon dots in zeolites:room-temperature phosphorescence and thermally activated delayed fluorescence[J].ACS Mater. Lett., 2019, 1(1):58-63.
XU Z G, SUN X B, MA P P, et al.. A visible-light-excited afterglow achieved by carbon dots from rhodamine B fixed in boron oxide[J].J. Mater. Chem. C, 2020, 8(13):4557-4563.
ZHANG H Y, LIU K K, LIU J C, et al.. Carbon dots-in-zeolite via in-situ solvent-free thermal crystallization:achieving high-efficiency and ultralong afterglow dual emission[J].CCS Chem., 2020, 2(3):118-127.
SUN Y Q, LIU J K, PANG X L, et al.. Temperature-responsive conversion of thermally activated delayed fluorescence and room-temperature phosphorescence of carbon dots in silica[J].J. Mater. Chem. C, 2020, 8(17):5744-5751.
JIANG K, WANG Y H, GAO X L, et al.. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation[J].Angew. Chem. Int. Ed., 2018, 57(21):6216-6220.
JIANG K, WANG Y H, CAI C Z, et al.. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J].Adv. Mater., 2018, 30(26):1800783.
SU Q, LU C S, YANG X M. Efficient room temperature phosphorescence carbon dots:information encryption and dual-channel pH sensing[J].Carbon, 2019, 152:609-615.
CHEN Y H, HE J L, HU C F, et al.. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates[J].J. Mater. Chem. C, 2017, 5(25):6243-6250.
TAO S Y, LU S Y, GENG Y J, et al.. Design of metal-free polymer carbon dots:a new class of room-temperature phosphorescent materials[J].Angew. Chem. Int. Ed., 2018, 57(9):2393-2398.
GAO Y F, ZHANG H L, SHUANG S M, et al.. Visible-light-excited ultralong-lifetime room temperature phosphorescence based on nitrogen-doped carbon dots for double anticounterfeiting[J].Adv. Opt. Mater., 2020, 8(7):1901557.
XIA C L, ZHU S J, ZHANG S T, et al.. Carbonized polymer dots with tunable room-temperature phosphorescence lifetime and wavelength[J].ACS Appl. Mater. Interfaces, 2020, 12(34):38593-38601.
HOU J, WANG L, ZHANG P, et al.. Facile synthesis of carbon dots in an immiscible system with excitation-independent emission and thermally activated delayed fluorescence[J].Chem. Commun., 2015, 51(100):17768-17771.
ZHAO FF, ZHANG T Y, LIU Q, et al.. Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications[J].Sens. Actuators B Chem., 2020, 304:127344.
ZHAO W J, HE Z K, TANG B Z. Room-temperature phosphorescence from organic aggregates[J].Nat. Rev. Mater., 2020, doi:10.1038/s41578-020-0223-z.
JIANG K, GAO X L, FENG X Y, et al.. Carbon dots with dual-emissive, robust, and aggregation-induced room-temperature phosphorescence characteristics[J].Angew. Chem. Int. Ed., 2020, 59(3):1263-1269.
JIANG K, HU S Z, WANG Y C, et al.. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots[J].Small, 2020, 16(31):2001909.
GAO Y F, HAN H, LU W J,et al.. Matrix-free and highly efficient room-temperature phosphorescence of nitrogen-doped carbon dots[J].Langmuir, 2018, 34(43):12845-12852.
LIANG Y C, GOU S S, LIU K K, et al.. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution[J].Nano Today, 2020, 34:100900.
GUI R J, HE W J, JIN H, et al.. DNA assembly of carbon dots and 5-fluorouracil used for room-temperature phosphorescence turn-on sensing of AFP and AFP-triggered simultaneous release of dual-drug[J].Sens. Actuators B Chem., 2018, 255:1623-1630.
0
Views
272
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution