浏览全部资源
扫码关注微信
1.西北工业大学 柔性电子研究院, 柔性电子前沿科学中心, 生物医学材料与工程研究院, 陕西 西安 710072
2.太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
3.南京工业大学 先进材料研究院, 江苏 南京 211816
Published:2020-12,
Received:21 October 2020,
Accepted:2020-11-16
移动端阅览
JING SUN, HUI-LI MA, ZHONG-FU AN, et al. Recent Development of Polymers with Long-lived Persistent Luminescence. [J]. Chinese journal of luminescence, 2020, 41(12): 1490-1503.
JING SUN, HUI-LI MA, ZHONG-FU AN, et al. Recent Development of Polymers with Long-lived Persistent Luminescence. [J]. Chinese journal of luminescence, 2020, 41(12): 1490-1503. DOI: 10.37188/CJL.20200317.
高分子长余辉发光材料具有无定态结构、可加工性能好、发光寿命长、成本低廉等优点,对拓展纯有机长余辉发光材料的应用具有重要意义。为了实现高分子发光材料的长余辉发射,当前主要是利用杂原子或者重原子的自旋轨道耦合作用,提高单/三线态激子间的系间窜越能力;高分子基质中的氢键、卤键、离子键等分子内和分子间相互作用为磷光基团提供刚性环境,抑制其三线态激子的非辐射跃迁和猝灭。基于此,本文综述了近年来高分子长余辉发光材料的研究进展,以及在未来发展过程中面临的机遇与挑战。
Polymers with long-lived persistent luminescence have exhibited the characteristics of amorphous structure
excellent process properties
long luminescence lifetime and low cost
which were important to develop the potential application for the pure organic long-lived persistent luminescent materials. In order to obtain the polymers with long-lived persistent luminescence
the current method was to utilize the spin-orbit coupling of heteroatom or heavy atom to improve the inter-system crossing channels of singlet and triplet excitons; and polymer matrix with intramolecular and intermolecular interactions of hydrogen bond
halogen bonding
ionic band and so on will provide the rigid environment for phosphorescent groups to restrain the non-radiative transition and quenching of triplet excitons. Based on these
this article reviewed the research progress of polymers with long-lived persistent luminescence in recent years
as well as put forward the opportunities and challenges in the future development process.
高分子材料长余辉发光无定形态室温磷光
polymer materialspersistent luminescenceamorphous stateroom temperature phosphorescence
XU S, CHEN R F, ZHENG C, et al.. Excited state modulation for organic afterglow:materials and applications[J].Adv. Mater., 2016, 28(45):9920-9940.
KABE R, ADACHI C. Organic long persistent luminescence[J].Nature, 2017, 550(7676):384-387.
AN Z F, ZHENG C, TAO Y, et al.. Stabilizing triplet excited states for ultralong organic phosphorescence[J].Nat. Mater., 2015, 14(7):685-690.
HE Z K, ZHAO W, LAM J W Y, et al.. White light emission from a single organic molecule with dual phosphorescence at room temperature[J].Nat. Commun., 2017, 8(1):416-1-8.
HE Z H, GAO H Q, ZHANG S T, et al.. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications[J].Adv. Mater., 2019, 31:1807222.
YANG Z, XU C, LI W L, et al.. Boosting the quantum efficiency of ultralong organic phosphorescence up to 52% via intramolecular halogen bonding[J].Angew. Chem., 2020, 132:17604-17608.
BIAN L F, SHI H F, WANG X, et al.. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly[J].J. Am. Chem. Soc., 2018, 140(34):10734-10739.
GU L, SHI H F, GU M X, et al.. Dynamic ultralong organic phosphorescence by photoactivation[J].Angew. Chem. Int. Ed., 2018, 57(28):8425-8431.
CAI S Z, SHI H F, ZHANG Z Y, et al.. Hydrogen-bonded organic aromatic frameworks for ultralong phosphorescence by intralayer π-π interactions[J].Angew. Chem. Int. Ed., 2018, 57(15):4005-4009.
GU L, SHI H F, BIAN L F, et al.. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal[J].Nat. Photonics, 2019, 13(6):406-411.
KABE R, NOTSUKA N, YOSHIDA K, et al.. Afterglow organic light-emitting diode[J].Adv. Mater., 2016, 28(4):655-660.
FANG M M, YANG J, LI Z. Recent advances in purely organic room temperature phosphorescence polymer[J].Chin. J. Polym. Sci., 2019, 37(4):383-393.
GAN N, SHI H F, AN Z F, et al.. Recent advances in polymer-based metal-free room-temperature phosphorescent materials[J].Adv. Funct. Mater., 2018, 28(51):1802657-1-24.
LI Q Q, TANG Y H, HU W P, et al.. Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens:the intrinsic principle and recent progress[J].Small, 2018, 14(38):1801560-1-20.
CAI S Z, SHI H F, TIAN D, et al.. Enhancing ultralong organic phosphorescence by effective π-type halogen bonding[J].Adv. Funct. Mater., 2018, 28(9):1705045.
TIAN S, MA H L, WANG X, et al.. Utilizing d-pπ bonds for ultralong organic phosphorescence[J].Angew. Chem. Int. Ed., 2019, 58(20):6645-6649.
SHI H F, SONG L L, MA H L, et al.. Highly efficient ultralong organic phosphorescence through intramolecular-space heavy-atom effect[J].J. Phys. Chem. Lett., 2019, 10(3):595-600.
TAO Y, CHEN R F, LI H H, et al.. Resonance-activated spin-flipping for efficient organic ultralong room-temperature phosphorescence[J].Adv. Mater., 2018, 30(44):1803856.
ABE M, YAMAMOTO T. Synthesis and chemical properties of new soluble aromatic polyketones with cross π-conjugated systems[J].Synth. Met., 2006, 156(21-24):1390-1395.
LU X, FU H B. Enhanced room-temperature phosphorescence through intermolecular halogen/hydrogen bonding[J].Chem. Eur. J., 2019, 25(3):714-723.
FORNI A, LUCENTI E, BOTTA C, et al.. Metal free room temperature phosphorescence from molecular self-interactions in the solid state[J].J. Mater. Chem. C, 2018, 6(17):4603-4626.
ZHANG Y F, WANG Y C, YU X S, et al.. Isophthalate-based room temperature phosphorescence:from small molecule to side-chain jacketed liquid crystalline polymer[J].Macromolecules, 2019, 52(6):2495-2503.
ZHANG G Q, CHEN J B, PAYNE S J, et al.. Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence[J].J. Am. Chem. Soc., 2007, 129(29):8942-8943.
DEROSA C A, KERR C, FAN Z Y, et al.. Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials[J].ACS Appl. Mater. Interfaces, 2015, 7(42):23633-23643.
DEROSA C A, SEAMAN S A, MATHEW A S, et al.. Oxygen sensing difluoroboron β-diketonate polylactide materials with tunable dynamic ranges for wound imaging[J].ACS Sens., 2016, 1(11):1366-1373.
DEROSA C A, SAMONINA-KOSICKA J, FAN Z Y,et al.. Oxygen sensing difluoroboron dinaphthoylmethane polylactide[J].Macromolecules, 2015, 48(9):2967-2977.
ZHANG G Q, FIORE G L, ST CLAIR T L, et al.. Difluoroboron dibenzoylmethane PCL-PLA block copolymers:matrix effects on room temperature phosphorescence[J].Macromolecules, 2009, 42(8):3162-3169.
CHEN X F, XU C, WANG T, et al.. Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides:emission enhancement and chemical conjugation[J].Angew. Chem. Int. Ed., 2016, 55(34):9872-9876.
MA X, XU C, WANG J, et al.. Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission[J].Angew. Chem. Int. Ed., 2018, 130(34):11020-11024.
OGOSHI T, TSUCHIDA H, KAKUTA T, et al.. Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state[J].Adv. Funct. Mater., 2018, 28(16):1707369.
YONG G P, ZHANG Y M, SHE W L. Anion-π interactions in new electron-deficient π systems:the relevance to solid phosphorescent colors[J]. CrystEngComm, 2012, 14(11):3923-3929.
CHENG Z C, SHI H F, MA H L, et al.. Ultralong phosphorescence from organic ionic crystals under ambient conditions[J].Angew. Chem. Int. Ed., 2018, 57(3):678-682.
CHEN G L, GUO S D, FENG H, et al.. Anion-regulated transient and persistent phosphorescence and size-dependent ultralong afterglow of organic ionic crystals[J].J. Mater. Chem. C, 2019, 7(46):14535-14542.
CAI S Z, MA H L, SHI H F, et al.. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking[J].Nat. Commun., 2019, 10(1):4247-1-8.
GU L, WU H W, MA H L, et al.. Color-tunable ultralong organic room temperature phosphorescence from a multicomponent copolymer[J].Nat. Commun., 2020, 11(1):944-1-8.
WANG H, SHI H F, YE W P, et al.. Amorphous ionic polymers with color-tunable ultralong organic phosphorescence[J].Angew. Chem. Int. Ed., 2019, 58(52):18776-18782.
XU S P, EVANS R E, LIU T D, et al.. Aromatic difluoroboron β-diketonate complexes:effects of π-conjugation and media on optical properties[J].Inorg. Chem., 2013, 52(7):3597-3610.
LIU T D, ZHANG G Q, EVANS R E, et al.. Phosphorescence tuning through heavy atom placement in unsymmetrical difluoroboron β-diketonate materials[J].Chem. Eur. J., 2018, 24(8):1859-1869.
DALY M L, KERR C, DEROSA C A, et al.. Meta-alkoxy-substituted difluoroboron dibenzoylmethane complexes as environment-sensitive materials[J].ACS Appl. Mater. Interfaces, 2017, 9(37):32008-32017.
REINEKE S, SEIDLER N, YOST S R, et al.. Highly efficient, dual state emission from an organic semiconductor[J].Appl. Phys. Lett., 2013, 103(9):93302.
MIENO H, KABE R, NOTSUKA N, et al.. Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF-8[J].Adv. Opt. Mater., 2016, 4(7):1015-1021.
REINEKE S, BALDO M A. Room temperature triplet state spectroscopy of organic semiconductors[J].Sci. Rep., 2015, 4:3797-1-8.
WU H W, CHI W J, CHEN Z, et al.. Achieving amorphous ultralong room temperature phosphorescence by coassembling planar small organic molecules with polyvinyl alcohol[J].Adv. Funct. Mater., 2019, 29(10):1807243-1-10.
SU Y, PHUA S Z F, LI Y B, et al.. Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption[J].Sci. Adv., 2018, 4(5):eaas9732-1-11.
GAO R, FANG X Y, YAN D P. Direct white-light emitting room-temperature-phosphorescence thin films with tunable two-color polarized emission through orientational hydrogen-bonding layer-by-layer assembly[J].J. Mater. Chem. C, 2018, 6(16):4444-4449.
LIN Z S, KABE R, NISHIMURA N, et al.. Organic long-persistent luminescence from a flexible and transparent doped polymer[J].Adv. Mater., 2018, 30(45):1803713.
0
Views
665
下载量
5
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution