浏览全部资源
扫码关注微信
1.河北大学 化学与环境科学学院, 药物化学与分子诊断教育部重点实验室, 河北省化学生物学重点实验室, 河北 保定 071002
2.河北大学 药学院, 河北 保定 071002
Published:2020-12,
Received:16 October 2020,
Accepted:2020-10-31
移动端阅览
JIN-ZHU MA, MIAO ZHANG, YU-E SHI, et al. Synthesis, Optical Properties and Applications of Luminescent Sulfur Nanodots. [J]. Chinese journal of luminescence, 2020, 41(12): 1627-1637.
JIN-ZHU MA, MIAO ZHANG, YU-E SHI, et al. Synthesis, Optical Properties and Applications of Luminescent Sulfur Nanodots. [J]. Chinese journal of luminescence, 2020, 41(12): 1627-1637. DOI: 10.37188/CJL.20200316.
硫纳米点(Sulfur nanodots,简称S-dots)具有无毒、原料来源丰富、易于溶液加工等优点,是一种新兴发光纳米材料。与广泛研究的Ⅱ-Ⅵ族半导体量子点、钙钛矿量子点以及碳点相比,S-dots的合成、光学性质及其应用研究尚处于初级阶段,详细总结S-dots研究的相关进展将极大地推动该材料的基础研究与应用发展。本文综述了S-dots的合成、光学性质表征及其在分析传感、生物成像以及光电器件等领域的应用研究进展,并对S-dots发展方向与前景进行了展望,希望能为该领域研究人员提供参考。
Sulfur nanodots(S-dots) is a kind of new luminescent nanomaterials
which has the advantages of non-toxic
abundant on raw materials
easy to process. Compared with traditional semiconductor quantum dots
perovskite quantum dots and carbon dots
the synthesis
optical properties and applications of S-dots are still in the primary stage. Summarizing the research progress of S-dots will greatly promote the relative works about both fundamental research and applications. In this review
the synthesis
characterizations
optical properties and applications in the fields of analytical sensing
bioimaging and optoelectronic devices of S-dots are summarized. We end up this review with the scope of research directions and prospects of S-dots. We hope this review can provide some clues for the researchers in this field.
硫纳米点湿法合成荧光分析传感光电器件
sulfur nanodotswet-chemistry synthesisphotoluminescenceanalytical sensingoptoelectronic devices
JE S H, BUYUKCAKIR O, KIM D,et al.. Direct utilization of elemental sulfur in the synthesis of microporous polymers for natural gas sweetening[J].Chem, 2016, 1(3):482-493.
LIM J, PYUN J, CHAR K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J].Angew. Chem. Int. Ed., 2015, 54(11):3249-3258.
CAO W X, DAI F Y, HU R R, et al.. Economic sulfur conversion to functional polythioamides through catalyst-free multicomponent polymerizations of sulfur, acids, and amines[J].J. Am. Chem. Soc., 2020, 142(2):978-986.
DUAN Y X, TAN J S, HUANG Z M, et al.. Facile synthesis of carboxymethyl cellulose sulfur quantum dots for live cell imaging and sensitive detection of Cr(Ⅵ) and ascorbic acid[J].Carbohydr. Polym., 2020, 249:116882.
TENG Y, ZHOU Q X, GAO P. Applications and challenges of elemental sulfur, nanosulfur, polymeric sulfur, sulfur composites, and plasmonic nanostructures[J].Crit. Rev. Environ. Sci. Technol., 2019, 49(24):2314-2358.
QU S N, WANG X Y, LU Q P, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots[J].Angew. Chem. Int. Ed., 2012, 51(49):12215-12218.
SHARMA V P, SHARMA U, CHATTOPADHYAY M, et al.. Advance applications of nanomaterials:a review[J].Mater. Today, 2018, 5(2):6376-6380.
GRIEBEL J J, NAMNABAT S, KIM E T, et al.. New infrared transmitting material via inverse vulcanization of elemental sulfur to prepare high refractive index polymers[J].Adv. Mater., 2014, 26(19):3014-3018.
RAO K J, PARIA S. Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens[J].RSC Adv., 2013, 3(26):10471-10478.
GRIEBEL J J, GLASS R S, CHAR K, et al.. Polymerizations with elemental sulfur:a novel route to high sulfur content polymers for sustainability, energy and defense[J].Prog. Polym. Sci., 2016, 58:90-125.
XIE X Y, ZHENG W J, BAI Y, et al.. Cystine modified nano-sulfur and its spectral properties[J].Mater. Lett., 2009, 63(16):1374-1376.
GAO P X, WANG G, ZHOU L. Luminescent sulfur quantum dots:synthesis, properties and potential applications[J].ChemPhotoChem, 2020, doi:10.1002/cptc.202000158.
WANG H Q, ZHANG W C, XU J Z, et al.. Advances in polar materials for lithium-sulfur batteries[J].Adv. Funct. Mater., 2018, 28(38):1707520.
SHEN L H, WANG H N, LIU S N, et al.. Assembling of sulfur quantum dots in fission of sublimed sulfur[J].J. Am. Chem. Soc., 2018, 140(25):7878-7884.
李严, 李金航, 许蕾梦, 等. CsPbI3钙钛矿量子点的精细纯化及其高效发光二极管的研究[J/OL].化学学报, (2020-10-16)[2020-10-20].http://kns.cnki.net/kcms/detail/31.1320.O6.20201016.1334.002.htmlhttp://kns.cnki.net/kcms/detail/31.1320.O6.20201016.1334.002.html.
LI Y, LI J H, XU L M, et al.. CsPbI3 perovskite quantum dots: fine purification and highly efficient light-emitting diodes[J/OL].Acta Chim. Sinica, (2020-10-16)[2020-10-20].http://kns.cnki.net/kcms/detail/31.1320.O6.20201016.1334.002.htmlhttp://kns.cnki.net/kcms/detail/31.1320.O6.20201016.1334.002.html. (in Chinese)
WANG H G, WANG Z G, XIONG Y, et al.. Hydrogen peroxide assisted synthesis of highly luminescent sulfur quantum dots[J].Angew. Chem. Int. Ed., 2019, 58(21):7040-7044.
XIAO L, DU Q C, HUANG Y, et al.. Rapid synthesis of sulfur nanodots by one-step hydrothermal reaction for luminescence-based applications[J].ACS Appl. Nano Mater., 2019, 2(10):6622-6628.
ZHANG C C, ZHANG P, JI X J, et al.. Ultrasonication-promoted synthesis of luminescent sulfur nano-dots for cellular imaging applications[J].Chem. Commun., 2019, 55(86):13004-13007.
HU Z, DAI H Q, WEI X, et al.. 49.25% efficient cyan emissive sulfur dots via a microwave-assisted route[J].RSC Adv., 2020, 10(29):17266-17269.
SONG Y H, TAN J S, WANG G, et al.. Oxygen accelerated scalable synthesis of highly fluorescent sulfur quantum dots[J].Chem. Sci., 2020, 11(3):772-777.
LI Q L, SHI L X, DU K, et al.. Copper-ion-assisted precipitation etching method for the luminescent enhanced assembling of sulfur quantum dots[J].ACS Omega, 2020, 5(10):5407-5411.
ZHANG Y Q, LIU J X, WU X H, et al.. Ultrasensitive detection of Cr(Ⅵ) (Cr2O72-/CrO42-) ions in water environment with a fluorescent sensor based on metal-organic frameworks combined with sulfur quantum dots[J].Anal. Chim. Acta, 2020, 1131:68-79.
JING L H, KERSHAW S V, LI Y L, et al.. Aqueous based semiconductor nanocrystals[J].Chem. Rev., 2016, 116(18):10623-10730.
REISS P, CARRIÈRE M, LINCHENEAU C, et al.. Synthesis of semiconductor nanocrystals, focusing on nontoxic and earth-abundant materials[J].Chem. Rev., 2016, 116(18):10731-10819.
QIAO G X, LIU L, HAO X X, et al.. Signal transduction from small particles:sulfur nanodots featuring mercury sensing, cell entry mechanism and in vitro tracking performance[J].Chem. Eng. J., 2020, 382:122907.
ARSHAD F, SK M P. Luminescent sulfur quantum dots for colorimetric discrimination of multiple metal Ions[J].ACS Appl. Nano Mater., 2020, 3(3):3044-3049.
LIU G, NIU P, YIN L C, et al.. α-sulfur crystals as a visible-light-active photocatalyst[J].J. Am. Chem. Soc., 2012, 134(22):9070-9073.
SANDERSON W M, HOY J, MORRISON C, et al.. Excitation energy dependence of photoluminescence quantum yields in semiconductor nanomaterials with varying dimensionalities[J].J. Phys. Chem. Lett., 2020, 11(9):3249-3256.
ZORMAN B, RAMAKRISHNA M V, FRIESNER R A. Quantum confinement effects in cdse quantum dots[J].J. Phys. Chem., 1995, 99(19):7649-7653.
MEYER B. Solid allotropes of sulfur[J].Chem. Rev., 1964, 64(4):429-451.
WANG S, BAO X, GAO B, et al.. A novel sulfur quantum dot for the detection of cobalt ions and norfloxacin as a fluorescent "switch"[J].Dalton Trans., 2019, 48(23):8288-8296.
ZHAO J, FAN Z F. Using zinc ion-enhanced fluorescence of sulfur quantum dots to improve the detection of the zinc(Ⅱ)-binding antifungal drug clioquinol[J].Microchim. Acta, 2020, 187(1):3.
LI T Z, GAO Y T, LI H Y, et al.. Ultrasensitive detection of butyrylcholinesterase activity based on the inner filter effect of MnO2 nanosheets on sulfur nanodots[J].Analyst, 2020, 145(15):5206-5212.
朱菲菲, 杨柳, 刘凯, 等. ZnO量子点的制备及其在白光LED中的应用[J].发光学报, 2017, 38(11):1420-1428.
ZHU F F, YANG L, LIU K, et al.. Preparation of ZnO quantum dots and their applications in white LED[J].Chin. J. Lumin., 2017, 38(11):1420-1428. (in Chinese)
TERRASCHKE H, WICKLEDER C. UV, Blue, green, yellow, red, and small:newest developments on Eu2+-doped nanophosphors[J].Chem. Rev., 2015, 115(20):11352-11378.
LIN C C, MEIJERINK A, LIU R S. Critical red components for next-generation white LEDs[J].J. Phys. Chem. Lett., 2016, 7(3):495-503.
OGI T, IWASAKI H, NANDIYANTO A B D, et al.. Direct white light emission from a rare-earth-free aluminium-boron-carbon-oxynitride phosphor[J].J. Mater. Chem. C, 2014, 2(21):4297-4303.
郭崇峰, 初本莉, 徐剑, 等.氧化物膜包覆碱土硫化物荧光粉的研究[J].发光学报, 2004, 25(4):449-454.
GUO C F, CHU B L, XU J, et al.. Improving the stability of alkaline earth sulfide based phosphors by oxide coating[J].Chin. J. Lumin., 2004, 25(4):449-454. (in Chinese)
ZEUNER M, SCHMIDT P J, SCHNICK W. One-pot synthesis of single-source precursors for nanocrystalline LED phosphors M2Si5N8:Eu2+ (M=Sr, Ba)[J].Chem. Mater., 2009, 21(12):2467-2473.
WU Z N, LIU J L, GAO Y, et al.. Assembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic property[J].J. Am. Chem. Soc., 2015, 137(40):12906-12913.
CHEN B K, PRADHAN N, ZHONG H Z. From large-scale synthesis to lighting device applications of ternary Ⅰ-Ⅲ-Ⅵ. semiconductor nanocrystals:inspiring greener material emitters[J].J. Phys. Chem. Lett., 2018, 9(2):435-445.
0
Views
144
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution