浏览全部资源
扫码关注微信
北京交通大学 理学院, 光电子技术研究所, 发光与光信息教育部重点实验室, 北京 100044
Published:2020-12,
Received:20 October 2020,
Accepted:2 November 2020
扫 描 看 全 文
Cai-xia ZHANG, Xiang-peng ZHANG, Jia-hao ZHANG, et al. Advances in Non-fullerene Organic Solar Cells: from Device Physics to Magnetic Field Effects. [J]. Chinese Journal of Luminescence 41(12):1598-1613(2020)
Cai-xia ZHANG, Xiang-peng ZHANG, Jia-hao ZHANG, et al. Advances in Non-fullerene Organic Solar Cells: from Device Physics to Magnetic Field Effects. [J]. Chinese Journal of Luminescence 41(12):1598-1613(2020) DOI: 10.37188/CJL.20200314.
非富勒烯受体(NFA)材料是现阶段非常受欢迎的有机光电材料之一。基于非富勒烯受体的有机体异质结(BHJ)太阳能电池发展迅速,其单结能量转换效率(PCE)现已达到18%。有机半导体中单线态与三线态在磁场作用下的相互转换会影响其电子-空穴的解离与复合,从而对光伏性能有一定的影响。此外,三线态激子寿命和扩散距离较长,三线态-电荷反应的几率较大,增加光电流,使得三线态材料对于光伏性能的提高具有一定的作用。因此,本文主要从以下几个方面对非富勒烯有机太阳能电池进行叙述,首先讨论了有机太阳能电池中电荷分离、重组及能量损失对开路电压的影响;其次总结了有机太阳能电池磁场下自旋依赖的光物理过程及三线态材料在有机太阳能电池中的应用,了解二者对提高光伏性能的影响;最后对有机光伏性能的进一步提高以及有机半导体磁场下的自旋问题进行了展望。
Non-fullerene acceptor materials are one of the most popular organic optoelectronic materials at present stage. Organic bulk heterojunction(BHJ) solar cells based on non-fullerene acceptors(NFAs) have been developing rapidly
and their single-junction power conversion efficiencies (PCE) have reached 18%. The mutual conversion between singlets and triplets in organic semiconductors under the magnetic field will affect the dissociation and recombination for electrons and holes
thereby will have a certain impact on the photovoltaic performance. Moreover
the triplet excitons have a longer lifetime and diffusion distance
as well as higher probabilities for the triplet-charge reaction
which gives rise to the photocurrent
so that the triplet material has a certain effect on the improvement of photovoltaic performance. Thus
this article mainly discusses non-fullerene organic solar cells from the following aspects. Firstly
to discuss the effect of charge separation
recombination and energy loss on the open-circuit voltage; secondly
to talk about the spin-dependent photophysical process for the organic solar cells under the magnetic field and the application of the triplet materials in organic solar cells
both of which influence the improvement of photovoltaic performance; finally
a prospective for further improvements of the organic photovoltaic performance and the spin problem under the organic semiconductor magnetic field will be given.
非富勒烯有机太阳能电池电荷分离与重组能量损失磁场效应三线态受体材料
non-fullerene organic solar cellscharge separation and recombinationenergy lossesmagnetic field effectstriplet acceptor materials
BRUS V V, LEE J, LUGINBUHL B R, et al.. Solution-processed semitransparent organic photovoltaics: from molecular design to device performance[J].Adv. Mater., 2019, 31(30):1900904.
LEI T, PENG R X, SONG W, et al.. Bendable and foldable flexible organic solar cells based on Ag nanowire films with 10.30% efficiency[J].J. Mater. Chem. A, 2019, 7(8):3737-3744.
PENG R X, SONG W, YAN T T, et al.. Interface bonding engineering of a transparent conductive electrode towards highly efficient and mechanically flexible ITO-free organic solar cells[J].J. Mater. Chem. A, 2019, 7(18):11460-11467.
HE Z C, XIAO B, LIU F, et al.. Single-junction polymer solar cells with high efficiency and photovoltage[J].Nat. Photonics, 2015, 9(3):174-179.
ZHAO J B, LI Y K, YANG G F, et al.. Efficient organic solar cells processed from hydrocarbon solvents[J].Nat. Energy, 2016, 1(2):15027.
LI W, CHEN M X, CAI J L, et al.. Molecular order control of non-fullerene acceptors for high-efficiency polymer solar cells[J].Joule, 2019, 3(3):819-833.
O'HARA K A, OSTROWSKI D P, KOLDEMIR U, et al.. Role of crystallization in the morphology of polymer:non-fullerene acceptor bulk heterojunctions[J].ACS Appl. Mater. Interfaces, 2017, 9(22):19021-19029.
LI W, CHEN M X, ZHANG Z H, et al.. Retarding the crystallization of a nonfullerene electron acceptor for high-performance polymer solar cells[J].Adv. Funct. Mater., 2019, 29(5):1807662.
KWON O K, UDDIN M A, PARK J H, et al.. A high efficiency nonfullerene organic solar cell with optimized crystalline organizations[J].Adv. Mater., 2016, 28(5):910-916.
许贺菊, 张彬, 张瑜, 等.基于薄膜退火的MoS2/SiO2/Si异质结太阳能电池光伏性能提高[J].光学 精密工程, 2017, 25(3):597-602.
XU H J, ZHANG B, ZHANG Y, et al.. Enhancement of photovoltaic performance of MoS2/SiO2/Si heterojunction solar cells by film annealing[J].Opt. Precision Eng., 2017, 25(3):597-602. (in Chinese)
LIN Y Z, WANG J Y, ZHANG Z G, et al.. An electron acceptor challenging fullerenes for efficient polymer solar cells[J].Adv. Mater., 2015, 27(7):1170-1174.
YAO H F, WANG J W, XU Y, et al.. Recent progress in chlorinated organic photovoltaic materials[J].ACC Chem. Res., 2020, 53(4):822-832.
CHEN T W, PENG K L, LIN Y W, et al.. A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells[J].J. Mater. Chem. A, 2020, 8(3):1131-1137.
CUI Y, YAO H F, ZHANG J Q, et al.. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages[J].Nat. Commun., 2019, 10(1):2515.
WADSWORTH A, MOSER M, MARKS A, et al.. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells[J].Chem. Soc. Rev., 2019, 48(6):1596-1625.
XIE D J, LIU T, GAO W, et al.. A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency[J].Sol. RRL, 2017, 1(6):1700044.
王丽娟, 张伟, 秦海涛, 等.溶液加工条件对聚合物体相异质结太阳能电池性能的影响[J].液晶与显示, 2013, 28(4):521-526.
WANG L J, ZHANG W, QIN H T, et al.. Influence of solution-processed conditions on polymer bulk heterojunction solar cell performance[J].Chin. J. Liq. Cryst. Disp., 2013, 28(4):521-526. (in Chinese)
MENG L X, ZHANG Y M, WAN X J, et al.. Organic and solution-processed tandem solar cells with 17.3% efficiency[J].Science, 2018, 361(6407):1094-1098.
XIAO Z, JIA X, DING L M. Ternary organic solar cells offer 14% power conversion efficiency[J].Sci. Bull., 2017, 62(23):1562-1564.
王美, 刘久铭, 刘春雨, 等.体异质结聚合物太阳能电池的界面工程[J].光学 精密工程, 2020, 28(9):1893-1904.
WANG M, LIU J M, LIU C Y, et al.. Interface engineering of polymer solar cells[J].Opt. Precision Eng., 2020, 28(9):1893-1904. (in Chinese)
LIU Q S, JIANG Y F, JIN K, et al.. 18% Efficiency organic solar cells[J].Sci. Bull., 2020, 65(4):272-275.
PEREZ M D, BOREK C, FORREST S R, et al.. Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices[J].J. Am. Chem. Soc., 2009, 131(26):9281-9286.
LI S X, LIU W Q, LI C Z, et al.. Efficient organic solar cells with non-fullerene acceptors[J].Small, 2017, 13(37):1701120.
XU H X, WANG M S, YU Z G, et al.. Magnetic field effects on excited states, charge transport, and electrical polarization in organic semiconductors in spin and orbital regimes[J].Adv. Phys., 2019, 68(2):49-121.
HU B, YAN L, SHAO M. Magnetic-field effects in organic semiconducting materials and devices[J].Adv. Mater., 2009, 21(14-15):1500-1516.
GENG R G, DAUGHERTY T T, DO K, et al.. A review on organic spintronic materials and devices:Ⅰ.Magnetic field effect on organic light emitting diodes[J].J. Sci. Adv. Mater. Dev., 2016, 1(2):128-140.
ZHAO F G, WANG K, DUAN J S, et al.. Spin-dependent electron-hole recombination and dissociation in nonfullerene acceptor ITIC-based organic photovoltaic systems[J].Sol. RRL, 2019, 3(7):1900063.
ZHANG C X, WANG K, ZHAO F G, et al.. Essential relation of spin states, trap states and photo-induced polarization for efficient charge dissociation in a polymer-nonfullerene based organic photovoltaic system[J].Nano Energy, 2020, 78:105324.
MENKE S M, RAN N A, BAZAN G C, et al.. Understanding energy loss in organic solar cells:toward a new efficiency regime[J].Joule, 2018, 2(1):25-35.
VOHRA V, KAWASHIMA K, KAKARA T, et al.. Efficient inverted polymer solar cells employing favourable molecular orientation[J].Nat. Photonics, 2015, 9(6):403-408.
LI S X, ZHAN L L, SUN C K, et al.. Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets[J].J. Am. Chem. Soc., 2019, 141(7):3073-3082.
CHEN S S, WANG Y M, ZHANG L, et al.. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer[J].Adv. Mater., 2018, 30(45):1804215.
GAO, W, LIU T, LI J W, et al.. Simultaneously increasing open-circuit voltage and short-circuit current to minimize the energy loss in organic solar cells via designing asymmetrical non-fullerene acceptor[J].J. Mater. Chem. A, 2019, 7(18):11053-11061.
XIAO B, ZHAO Y J, TANG A L, et al.. PTB7-Th based organic solar cell with a high Voc of 1.05 V by modulating the LUMO energy level of benzotriazole-containing non-fullerene acceptor[J].Sci. Bull., 2017, 62(18):1275-1282.
XU X P, YU T, BI Z Z, et al.. Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1, 3, 4-thiadiazole-based wide-bandgap copolymers[J].Adv. Mater., 2018, 30(3):1703973.
JAILAUBEKOV A E, WILLARD A P, TRITSCH J R, et al.. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor interfaces in organic photovoltaics[J].Nat. Mater., 2013, 12(1):66-73.
FALKE S M, ROZZI C A, BRIDA D, et al.. Coherent ultrafast charge transfer in an organic photovoltaic blend[J].Science, 2014, 344(6187):1001-1005.
BAKULIN A A, RAO A, PAVELYEV V G, et al.. The role of driving energy and delocalized states for charge separation in organic semiconductors[J].Science, 2012, 335(6074):1340-1344.
BURKE T M, MCGEHEE M D. How high local charge carrier mobility and an energy cascade in a three-phase bulk heterojunction enable >90% quantum efficiency[J]. Adv. Mater., 2014, 26(12):1923-1928.
RYNO S M, FU Y T, RISKO C, et al.. Polarization energies at organic-organic interfaces:impact on the charge separation barrier at donor-acceptor interfaces in organic solar cells[J].ACS Appl. Mater. Interfaces, 2016, 8(24):15524-15534.
GURNEY R S, LIDZEY D G, WANG T. A review of non-fullerene polymer solar cells:from device physics to morphology control[J].Rep. Prog. Phys., 2019, 82(3):036601.
YAO H F, CUIY, QIAN D P, et al.. 14.7% efficiency organic photovoltaic cells enabled by active materials with a large electrostatic potential difference[J].J. Am. Chem. Soc., 2019, 141(19):7743-7750.
YAO H F, QIAN D P, ZHANG H, et al.. Critical role of molecular electrostatic potential on charge generation in organic solar cells[J].Chin. J. Chem., 2018, 36(6):491-494.
PERDIG N-TORO L, ZHANG H T, MARKINA A, et al.. Barrierless free charge generation in the high-performance PM6:Y6 bulk heterojunction non-fullerene solar cell[J].Adv. Mater., 2020, 32(9):1906763.
LEONG W L, COWAN S R, HEEGER A J. Differential resistance analysis of charge carrier losses in organic bulk heterojunction solar cells:observing the transition from bimolecular to trap-assisted recombination and quantifying the order of recombination[J].Adv. Energy Mater., 2011, 1(4):517-522.
BURKE T M, SWEETNAM S, VANDEWAL K, et al. Beyond Langevin recombination:how equilibrium between free carriers and charge transfer states determines the open-circuit voltage of organic solar cells[J].Adv. Energy Mater., 2015, 5(11):1500123.
王熹, 赵志国, 秦校军, 等.基于喷涂法制备氧化锡薄膜的钙钛矿太阳能电池[J].中国光学, 2019, 12(5):1040-1047.
WANG X, ZHAO Z G, QIN X J, et al.. Perovskite solar cells based on a spray-coating tin oxide film[J].Chin. Opt., 2019, 12(5):1040-1047. (in Chinese)
秦昱, 林珍华, 常晶晶, 等.印刷钙钛矿太阳能电池研究进展[J].中国光学, 2019, 12(5):1015-1027.
QIN Y, LIN Z H, CHANG J J, et al.. Research progress of printed perovskite solar cells[J].Chin. Opt., 2019, 12(5):1015-1027. (in Chinese)
谢世伟, 肖啸, 谭建军, 等.基于石墨烯基电极染料敏化太阳能电池的研究进展[J].中国光学, 2014, 7(1):47-56.
XIE S W, XIAO X, TAN J J, et al.. Recent progress in dye-sensitized solar cells using graphene-based electrodes[J].Chin. Opt., 2014, 7(1):47-56. (in Chinese)
公爽, 田金荣, 李克轩, 等.新型二维材料在固体激光器中的应用研究进展[J].中国光学, 2018, 11(1):18-30.
GONG S, TIAN J R, LI K X, et al.. Advances in new two-dimensional materials and its application in solid-state lasers[J].Chin. Opt., 2018, 11(1):18-30. (in Chinese)
SHI D, ADINOLFI V, COMIN R, et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J].Science, 2015, 347(6221):519-522.
XIE F X, SU H M, MAO J, et al.. Evolution of diffusion length and trap state induced by chloride in perovskite solar cell[J].J. Phys. Chem. C, 2016, 120(38):21248-21253.
MA L J, ZHANG S Q, YAO H F, et al.. High-efficiency nonfullerene organic solar cells enabled by 1 000 nm thick active layers with a low trap-state density[J].ACS Appl. Mater. Interfaces, 2020, 12(16):18777-18784.
VANDEWAL K, TVINGSTEDT K, GADISA A, et al.. Relating the open-circuit voltage to interface molecular properties of donor:acceptor bulk heterojunction solar cells[J].Phys. Rev. B, 2010, 81(12):125204.
BENDUHN J, TVINGSTEDT K, PIERSIMONI F, et al.. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells[J].Nat. Energy, 2017, 2(6):17053.
WANG Y M, JAFARI M J, WANG N N, et al.. Light-induced degradation of fullerenes in organic solar cells:a case study on TQ1:PC71BM[J].J. Mater. Chem. A, 2018, 6(25):11884-11889.
QIAN D P, ZHENG Z L, YAO H F, et al.. Design rules for minimizing voltage losses in high-efficiency organic solar cells[J].Nat. Mater., 2018, 17(8):703-709.
BARAN D, KIRCHARTZ T, WHEELER S, et al.. Reduced voltage losses yield 10% efficient fullerene free organic solar cells with> 1 V open circuit voltages[J].Energy Environ. Sci., 2016, 9(12):3783-3793.
LIU J, CHEN S S, QIAN D P, et al.. Fast charge separation in a non-fullerene organic solar cell with a small driving force[J].Nat. Energy, 2016, 1(7):16089.
ZHAO W C, QIAN D P, ZHANG S Q, et al.. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability[J].Adv. Mater., 2016, 28(23):4734-4739.
XU Z H, HU B. Photovoltaic processes of singlet and triplet excited states in organic solar cells[J].Adv. Funct. Mater., 2008, 18(17):2611-2617.
WANG F J, BÄSSLER H, VARDENY Z V. Magnetic field effects in π-conjugated polymer-fullerene blends:evidence for multiple components[J].Phys. Rev. Lett., 2008, 101(23):236805.
KLEIN M, MAJUMDAR S, ZASSOWSKI P, et al.. Unravelling the role of electron-hole pair spin in exciton dissociation in squaraine-based organic solar cells by magneto-photocurrent measurements[J].J. Mater. Chem. C, 2018, 6(3):482-490.
DEVIR-WOLFMAN A H, KHACHATRYAN B, GAUTAM B R, et al.. Short-lived charge-transfer excitons in organic photovoltaic cells studied by high-field magneto-photocurrent[J].Nat. Commun., 2014, 5(1):4529.
ZHU X X, WANG K, HE J Q, et al.. Exploring deep and shallow trap states in a non-fullerene acceptor ITIC-based organic bulk heterojunction photovoltaic system[J].J. Phys. Chem. C, 2019, 123(34):20691-20697.
陈健, 孟文潮, 凌枭, 等.氧化石墨烯的多色发光及其在荧光成像中的应用[J].中国光学, 2018, 11(3):377-391.
CHEN J, MENG W C, LING X, et al.. Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J].Chin. Opt., 2018, 11(3):377-391. (in Chinese)
HE L, LI M X, URBAS A, et al.. Magnetophotoluminescence line-shape narrowing through interactions between excited states in organic semiconducting materials[J].Phys. Rev. B, 2014, 89(15):155304.
PEUMANS P, YAKIMOV A, FORREST S R. Small molecular weight organic thin-film photodetectors and solar cells[J].J. Appl. Phys., 2003, 93(7):3693-3723.
SHAO Y, YANG Y. Efficient organic heterojunction photovoltaic cells based on triplet materials[J].Adv. Mater., 2005, 17(23):2841-2844.
ZHEN H Y, HOU Q, LI K, et al.. Solution-processed bulk-heterojunction organic solar cells employing Ir complexes as electron donors[J].J. Mater. Chem. A, 2014, 2(31):12390-12396.
HE W H, LIVSHITS M Y, DICKIE D A, et al.. A "roller-wheel" Pt-containing small molecule that outperforms its polymer analogs in organic solar cells[J].Chem. Sci., 2016, 7(9):5798-5804.
HE W H, LIVSHITS M Y, DICKIE D A, et al.. "Roller-wheel"-type Pt-containing small molecules and the impact of "rollers" on material crystallinity, electronic properties, and solar cell performance[J].J. Am. Chem. Soc., 2017, 139(40):14109-14119
YANG L, QIN L Q, XU Y X, et al.. Sulfur vs. tellurium:the heteroatom effects on the nonfullerene acceptors[J].Sci. China Chem., 2019, 62(7):897-903.
QIAO M, ZHANG R, HAO J Y, et al.. Dramatic enhancement of power conversion efficiency in polymer solar cells by conjugating very low ratio of triplet iridium complexes to PTB7[J].Adv. Mater., 2015, 27(23):3546-3552.
YANG L, GU W X, LV L, et al.. Triplet tellurophene-based acceptors for organic solar cells[J].Angew. Chem., 2018, 130(4):1108-1114.
CHEN H, DENG Y H, ZHU X Y, et al.. Toward achieving single-molecule white electroluminescence from dual emission of fluorescence and phosphorescence[J].Chem. Mater., 2020, 32(9):4038-4044.
UOYAMA H, GOUSHI K, SHIZU K, et al.. Highly efficient organic light-emitting diodes from delayed fluorescence[J].Nature, 2012, 492(7428):234-238.
QIN L Q, LIU X Z, ZHANG X, et al.. Triplet acceptors with a D-A structure and twisted conformation for efficient organic solar cells[J].Angew. Chem. Int. Ed., 2020, 59(35):15043-15049.
0
Views
130
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution