浏览全部资源
扫码关注微信
1.长春理工大学理学院 高功率半导体激光国家重点实验室, 吉林 长春 130022
2.香港中文大学(深圳) 理工学院, 广东 深圳 518172
3.北京有色金属研究总院 智能传感功能材料国家重点实验室, 北京 100088
4.哈尔滨工业大学 材料科学与工程学院, 黑龙江 哈尔滨 150001
Published:2021-02,
Received:13 October 2020,
Accepted:2020-12-10
移动端阅览
SHENG-DA LIU, DAN FANG, XUAN FANG, et al. Advances in Epitaxial Growth, Structural and Optical Properties of Antimonide-based Type-Ⅱ Superlattices. [J]. Chinese journal of luminescence, 2021, 42(2): 165-186.
SHENG-DA LIU, DAN FANG, XUAN FANG, et al. Advances in Epitaxial Growth, Structural and Optical Properties of Antimonide-based Type-Ⅱ Superlattices. [J]. Chinese journal of luminescence, 2021, 42(2): 165-186. DOI: 10.37188/CJL.20200304.
近年来,锑化物Ⅱ类超晶格材料在外延生长和发光性质等方面的研究取得了巨大的进步,为获得高性能中红外波段光电子器件奠定了重要的基础。然而,由于传统的InAs/GaSb体系超晶格材料中内部本征Ga原子缺陷的存在,使得InAs/GaSb材料的少子寿命过短,严重影响了光电子器件性能的提升,因此设计并生长具有长少子寿命的新材料体系超晶格材料具有重要的研究意义。本文对现阶段锑化物Ⅱ类超晶格材料的各类材料体系进行了总结和分析,着重强调了各类材料体系的外延生长条件、结构及光学特性等方面的研究进展,并对锑化物Ⅱ类超晶格材料今后的发展进行了展望。
In recent years
antimonide type-Ⅱ superlattices have a great progress in the epitaxial growth and luminescence property research
which has laid an important foundation for the research of high-performance middle infrared band optoelectronic devices. However
due to the existence of intrinsic Ga atomic defects
the traditional InAs/GaSb system superlattice materials make the minority life of InAs/GaSb materials too short
which seriously affects the performance improvement of optoelectronic devices. Therefore
it is of great significance to design and grow new material system superlattice materials with long minor carrier lifetime. This paper summarizes and analyzes the various materials systems of antimonide type-Ⅱ superlattice materials at present
emphasizes the development of epitaxial growth conditions
structure and optical properties of various material systems
and gives a prospect for the future development of antimonide type-Ⅱ superlattice materials.
锑化物超晶格分子束外延少子寿命
antimonidesuperlatticemolecular beam epitaxyminor carrier lifetime
ESAKI L, TSU R. Superlattice and negative differential conductivity in semiconductors[J].IBM J. Res. Dev., 1970, 14(1):61-65.
TING D Z Y, HILL C J, SOIBEL A, et al.. A high-performance long wavelength superlattice complementary barrier infrared detector[J].Appl. Phys. Lett., 2009, 95(2):023508-1-3.
POUR S A, HUANG E K, CHEN G, et al.. High operating temperature midwave infrared photodiodes and focal plane arrays based on type-Ⅱ InAs/GaSb superlattices[J].Appl. Phys. Lett., 2011, 98(14):143501.
CHEN G X, HADDADI A, HOANG A M, et al.. Demonstration of type-Ⅱ superlattice MWIR minority carrier unipolar imager for high operation temperature application[J].Opt. Lett., 2015, 40(1):45-47.
DAI N, LUO H, ZHANG F C, et al.. Spin superlattice formation in ZnSe/Zn1-xMnxSe multilayers[J].Phys. Rev. Lett., 1991, 67(27):3824-3827.
WU Y Y, FAN R, YANG P D, et al.. Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires[J].Nano Lett., 2002, 2(2):83-86.
YANG W, CHEN G R, SHI Z W, et al.. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J].Nat. Mater., 2013, 12(9):792-797.
ZHU H O, XU X T, TIAN X Q, et al.. A thresholdless tunable Raman nanolaser using a ZnO-graphene superlattice[J].Adv. Mater., 2017, 29(2):1604351-1-6.
DUAN X D, WANG C, PAN A L, et al.. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors:opportunities and challenges[J].Chem. Soc. Rev., 2015, 44(24):8859-8876.
CAO Y, RODAN-LEGRAIN D, RUBIES-BIGORDA O, et al.. Author correction:tunable correlated states and spin-polarized phases in twisted bilayer-bilayer grapheme[J].Nature, 2020, 583:E27.
LI X B, CHEN N K, WANG X P, et al.. Phase-change superlattice materials toward low power consumption and high density data storage:microscopic picture, working principles, and optimization[J].Adv. Funct. Mater., 2018, 28(44):1803380-1-21.
HAO R T, REN Y, LIU S J, et al.. Fabrication and characterization of high lattice matched InAs/InAsSb superlattice infrared photodetector[J].J. Cryst. Growth, 2017, 470:33-36.
ROGALSKI A, ANTOSZEWSKI J, FARAONE L. Third-generation infrared photodetector arrays[J].J. Appl. Phys., 2009, 105(9):091101-1-44.
ROGALSKI A. Recent progress in third generation infrared detectors[J].J. Mod. Opt., 2010, 57(18):1716-1730.
ROGALSKI A. New material systems for third generation infrared detectors[C].Proceedings Volume 7388, Ninth International Conference on Correlation Optics, Chernivsti, Ukraine, 2009.
MVNZBERG M, BREITER R, CABANSKI W, et al.. Dual color IR detection modules, trends and applications[C].Proceedings Volume 6542, Infrared Technology and Applications ⅩⅩⅩⅢ, Florida, United States, 2007.
ZHOU Z Q, LIN Y W, NIU Z C, et al.. MBE growth of high-quality GaAs heterostructures for optoelectronic devices[C].Proceedings Volume 2886, Semiconductor Lasers Ⅱ, Beijing, China, 1996.
王国伟, 牛智川, 徐应强, 等.长波段InAs/GaSb超晶格材料的分子束外延研究[J].航空兵器, 2013(2):33-37.
WANG G W, NIU Z C, XU Y Q, et al.. MBE growth of InAs/GaSb superlattices for long-wavelength infrared detection[J].Aero Weaponry, 2013(2):33-37. (in Chinese)
LI J B, WU X G, WANG G W, et al.. Photoexcitation-induced carrier dynamics in an undoped InAs/GaSb quantum well[J].J. Phys. D: Appl. Phys., 2016, 49(14):145303.
ZHOU Y, CHEN J X, XU Q Q, et al.. Studies on InAs/GaSb superlattice structural properties by high resolution X-ray diffraction[J].J. Vac. Sci. Technol. B, 2012, 30(5):051203-1-6.
周易, 陈建新, 徐庆庆, 等.长波InAs/GaSb Ⅱ类超晶格红外探测器[J].红外与毫米波学报, 2013, 32(3):210-213.
ZHOU Y, CHEN J X, XU Q Q, et al.. Long wavelength infrared detector based on type-Ⅱ InAs/GaSb superlattice[J].J. Infrared Millim. Waves, 2013, 32(3):210-213. (in Chinese)
CHEN J X, XU Q Q, ZHOU Y, et al.. Growth and fabrication of InAs/GaSb type Ⅱ superlattice mid-wavelength infrared photodetectors[J].Nanoscale Res. Lett., 2011, 6(1):635-1-5.
SAI-HALASZ G A, TSU R, ESAKI L, et al.. A new semiconductor superlattice[J].Appl. Phys. Lett., 1977, 30(12):651-653.
SAI-HALASZ G A, CHANG L L, WELTER J M, et al.. Optical absorption of In1-xGaxAs-GaSb1-yAsy superlattices[J].Solid State Commun., 1978, 27(10):935-937.
SAI-HALASZ G A, ESAKI L, HARRISON W A, et al.. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition[J].Phys. Rev. B, 1978, 18(6):2812-2818.
MANASREH M O. Antimonide-related Strained-layer Heterostructures [M]. London:CRC Press, 1997.
ARIYAWANSA G, REYNER C J, STEENBERGEN E H, et al.. InGaAs/InAsSb strained layer superlattices for mid-wave infrared detectors[J].Appl. Phys. Lett., 2016, 108(2):022106-1-5.
DU P, FANG X, GONG Q, et al.. Fabrication and characterization of an InAs(Sb)/InxGa1-xAsySb1-y type-Ⅱ superlattice[J].Phys. Status Solidi RRL, 2019, 13(12):1900474.
ZHAO Y, TENG Y, MIAO J J, et al.. Mid-infrared InAs/GaSb superlattice planar photodiodes fabricated by metal-organic chemical vapor deposition[J].Chin. Phys. Lett., 2020, 37(6):068501-1-4.
CHEN Y, LIU J F, ZHAO Y, et al.. MOCVD growth of InAs/GaSb type-Ⅱ superlattices on InAs substrates for short wavelength infrared detection[J].Infrared Phys. Technol., 2020, 105:103209.
DUTTA P S, BHAT H L. The physics and technology of gallium antimonide:an emerging optoelectronic material[J].J. Appl. Phys., 1997, 81(9):5821-5870.
JOHNSON G R, CAVENETT B C, KERR T M, et al.. Optical, hall and cyclotron resonance measurements of GaSb grown by molecular beam epitaxy[J].Semicond. Sci. Technol., 1988, 3(12):1157-1165.
VURGAFTMAN I, MEYER J R, RAM-MOHAN L R, et al.. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J].J. Appl. Phys., 2001, 89(11):5815-5875.
KIM S G, KIM S, SHEN J, et al.. Interface structures of Ⅲ-Ⅴ semiconductor heterostructures[J].Int. J. Quantum Chem., 2003, 95(4-5):561-571.
GADALETA C, SCAMARCIO G, FUCHS F, et al.. Influence of the interface bond type on the far-infrared reflectivity of InAs/GaSb superlattices[J].J. Appl. Phys., 1995, 78(9):5642-5644.
HORIKOSHI Y, KAWASHIMA M, YAMAGUCHI H, et al.. Migration-enhanced epitaxy of GaAs and AlGaAs[J].Jpn. J. Appl. Phys., 1988, 27(2):169-179.
SOLOMON J S, PETRY L, TOMICH D H, et al.. Optimizing GaSb(111) and GaSb(001) surfaces for epitaxial film growth[J].Thin Solid Films, 1999, 343-344:500-503.
ZHANG T, CLOWES S K, DEBNATH M, et al.. High-mobility thin InSb films grown by molecular beam epitaxy[J].Appl. Phys. Lett., 2004, 84(22):4463-4465.
李承林, 房丹, 张健, 等.生长中断法生长InAs/GaSbⅡ型超晶格材料表面形貌的研究[J].光学学报, 2019, 39(9):0916001-1-5.
LI C L, FANG D, ZHANG J, et al.. Surface morphologies of InAs/GaSb type Ⅱ superlattice materials obtained via growth interruption method[J].Acta Opt. Sinica, 2019, 39(9):0916001-1-5. (in Chinese)
MANYK T, MICHALCZEWSKI K, MURAWSKI K, et al.. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors[J].Sensors, 2019, 19(8):1907.
CELLEK O O, LI H, SHEN X M, et al.. InAs/InAsSb type-Ⅱ superlattice: a promising material for mid-wavelength and long-wavelength infrared applications[C].Proceedings Volume 8353, Infrared Technology and Applications ⅩⅩⅩⅦ, Baltimore, Maryland, United States, 2012.
OLSON B V, SHANER E A, KIM J K, et al.. Identification of dominant recombination mechanisms in narrow-bandgap InAs/InAsSb type-Ⅱ superlattices and InAsSb alloys[J].Appl. Phys. Lett., 2013, 103(5):052106.
STEENBERGEN E H, NUNNA K, OUYANG L, et al.. Strain-balanced InAs/InAs1-xSbx type-Ⅱ superlattices grown by molecular beam epitaxy on GaSb substrates[J].J. Vac. Sci. Technol. B, 2012, 30(2):02B107-1-5.
KEEN J A, LANE D, KESARIA M, et al.. InAs/InAsSb type-Ⅱ strained-layer superlattices for mid-infrared LEDs[J].J. Phys. D: Appl. Phys., 2018, 51(7):075103-1-9.
BRACKER A S, NOSHO B Z, BARVOSA-CARTER W,et al.. Stoichiometry-induced roughness on antimonide growth surfaces[J].Appl. Phys. Lett., 2001, 78(17):2440-2442.
BIEFELD R M, BAUCOM K C, KURTZ S R, et al.. The optimization of interfaces in InAsSb/InGaAs strained-layer superlattices grown by metal-organic chemical vapor deposition[J].MRS Proc., 1994, 340:247-252.
KURTZ S R, BIEFELD R M, DAWSON L R, et al.. Midwave(4μm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions[J].Appl. Phys. Lett., 1994, 64(7):812-814.
KURTZ S R, BIEFELD R M, HOWARD A J, et al.. Magneto-optical determination of light-heavy hole splittings in As-rich, InAsSb alloys and superlattices[J].Appl. Phys. Lett., 1995, 67(22):3331-3333.
HJALMARSON H P, KURTZ S R. Electron Auger processes in mid-infrared InAsSb/InGaAs heterostructures[J].Appl. Phys. Lett., 1996, 69(7):949-951.
ARIYAWANSA G, REYNER C J, DURAN J M, et al.. Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices[J].Appl. Phys. Lett., 2016, 109(2):021112-1-5.
ONGSTAD A P, KASPI R, MOELLER C E, et al.. Spectral blueshift and improved luminescent properties with increasing GaSb layer thickness in InAs-GaSb type-Ⅱ superlattices[J].J. Appl. Phys., 2001, 89(4):2185-2188.
DONETSKY D, SVENSSON S P, VOROBJEV L E, et al.. Carrier lifetime measurements in short-period InAs/GaSb strained-layer superlattice structures[J].Appl. Phys. Lett., 2009, 95(21):212104-1-3.
OLSON B V, KIM J K, KADLEC E A, et al.. Minority carrier lifetime and dark current measurements in mid-wavelength infrared InAs0.91Sb0.09 alloy nBn photodetectors[J].Appl. Phys. Lett., 2015, 107(18):183504-1-4.
STEENBERGEN E H, ARIYAWANSA G, REYNER C J, et al.. A recent review of mid-wavelength infrared type-Ⅱ superlattices: carrier localization, device performance, and radiation tolerance[C].Proceedings Volume 10111, Quantum Sensing and Nano Electronics and Photonics ⅩⅣ, San Francisco, California, United States, 2017.
HÖGLUND L, SOIBEL A, TING D Z, et al.. Minority carrier lifetime and photoluminescence studies of antimony-based superlattices[C].Proceedings Volume 8511, Infrared Remote Sensing and Instrumentation ⅩⅩ, San Diego, California, United States, 2013.
GREIN C H, YOUNG P M, EHRENREICH H. Minority carrier lifetimes in ideal InGaSb/InAs superlattices[J].Appl. Phys. Lett., 1992, 61(24):2905-2907.
朱旭波, 彭震宇, 曹先存, 等. InAs/GaSb二类超晶格中/短波双色红外焦平面探测器[J].红外与激光工程, 2019, 48(11):1104001-1-6.
ZHU X B, PENG Z Y, CAO X C, et al.. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-Ⅱ InAs/GaSb superlattice[J].Infrared Laser Eng., 2019, 48(11):1104001-1-6. (in Chinese)
WEI Y, GIN A, RAZEGHI M, et al.. Advanced InAs/GaSb superlattice photovoltaic detectors for very long wavelength infrared applications[J].Appl. Phys. Lett., 2002, 80(18):3262-3264.
ZUO D, QIAO P F, WASSERMAN D, et al.. Direct observation of minority carrier lifetime improvement in InAs/GaSb type-Ⅱ superlattice photodiodes via interfacial layer control[J].Appl. Phys. Lett., 2013, 102(14):141107-1-4.
DELMAS M, RODRIGUEZ J B, CHRISTOL P, et al.. Electrical modeling of InAs/GaSb superlattice mid-wavelength infrared pin photodiode to analyze experimental dark current characteristics[J].J. Appl. Phys., 2014, 116(11):113101-1-7.
TANSEL T, HOSTUT M, ELAGOZ S, et al.. Electrical performance of InAs/AlSb/GaSb superlattice photodetectors[J].Superlattices Microstruct., 2016, 91:1-7.
LI Y, XIAO W L, WU L Y, et al.. Dark current characteristic of p-i-n and nBn MWIR InAs/GaSb superlattice infrared detectors[C].2019 4th Optoelectronics Global Conference, OGC, Shenzhen, China, 2019.
HAN X, JIANG D W, WANG G W, et al.. Small-pixel long wavelength infrared focal plane arrays based on InAs/GaSb type-Ⅱ superlattice[J].Infrared Phys. Technol., 2018, 89:35-40.
XU J J, XU Z C, BAI Z Z, et al.. Effects of etching processes on surface dark current of long-wave infrared InAs/GaSb superlattice detectors[J].Infrared Phys. Technol., 2020, 107:103277.
CUI S N, JIANG D W, SUN J, et al.. Investigation of active-region doping on InAs/GaSb long wave infrared detectors[J].Chin. Phys. B, 2020, 29(4):048502.
吕衍秋, 彭震宇, 曹先存, 等. 320×256 InAs/GaSb超晶格中/短波双色探测器组件研制[J].红外与激光工程, 2020, 49(1):0103007-1-5.
LV Y Q, PENG Z Y, CAO X C, et al.. 320×256 mid-/short-wavelength dual-color infrared detector based on InAs/GaSb superlattice[J].Infrared Laser Eng., 2020, 49(1):0103007-1-5. (in Chinese)
程雨, 鲍英豪, 肖钰, 等. InAs/GaSb Ⅱ类超晶格长波红外探测器背面减薄技术研究[J].红外, 2020, 41(8):15-20.
CHENG Y, BAO Y H, XIAO Y, et al.. Study on back thinning technologies of long-wave InAs/GaSb type-Ⅱ superlattice infrared detectors[J].Infrared, 2020, 41(8):15-20. (in Chinese)
OLSON B V, SHANER E A, KIM J K, et al.. Time-resolved optical measurements of minority carrier recombination in a mid-wave infrared InAsSb alloy and InAs/InAsSb superlattice[J].Appl. Phys. Lett., 2012, 101(9):092109-1-4.
STEENBERGEN E H, CONNELLY B C, METCALFE G D, et al.. Significantly improved minority carrier lifetime observed in a long-wavelength infrared Ⅲ-Ⅴ type-Ⅱ superlattice comprised of InAs/InAsSb[J].Appl. Phys. Lett., 2011, 99(25):251110-1-3.
马玲丽, 詹锋.全原子经验赝势法模拟InAs/InAsSb Ⅱ类超晶格[J].广西大学学报, 2018, 43(6):2462-2469.
MA L L, ZHAN F. All-atom empirical pseudopotential simulation of InAs/InAsSb type-Ⅱ superlattice[J].J. Guangxi Univ. (Nat Sci Ed), 2018, 43(6):2462-2469. (in Chinese)
AYTAC Y, OLSON B V, KIM J K, et al.. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices[J].Appl. Phys. Lett., 2014, 105(2):022107-1-4.
ZUO D, LIU R Y, WASSERMAN D, et al.. Direct minority carrier transport characterization of InAs/InAsSb superlattice nBn photodetectors[J].Appl. Phys. Lett., 2015, 106(7):071107-1-4.
SOIBEL A, TING D Z, RAFOL S B, et al.. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density[J].Appl. Phys. Lett., 2019, 114(16):161103-1-4.
LACKNER D, PITTS O J, STEGER M, et al.. Strain balanced InAs/InAsSb superlattice structures with optical emission to 10μm[J].Appl. Phys. Lett., 2009, 95(8):081906-1-3.
EDWALL D D, DEWAMES R E, MCLEVIGE W V, et al.. Measurement of minority carrier lifetime in n-type MBE HgCdTe and its dependence on annealing[J].J. Electron. Mater., 1998, 27(6):698-702.
HÖGLUND L, TING D Z, KHOSHAKHLAGH A, et al.. Influence of radiative and non-radiative recombination on the minority carrier lifetime in midwave infrared InAs/InAsSb superlattices[J].Appl. Phys. Lett., 2013, 103(22):221908-1-5.
HÖGLUND L, TING D Z, SOIBEL A, et al.. Influence of carrier concentration on the minority carrier lifetime in mid-wavelength infrared InAs/InAsSb superlattices[J].Infrared Phys. Technol., 2015, 70:62-65.
齐通通, 郭杰, 王国伟, 等. Sb浸润界面对InAs/InAsSb超晶格晶体结构和探测器性能的影响[J].材料导报, 2020, 34(S1):86-89.
QI T T, GUO J, WANG G W, et al.. Influence of Sb-soak interface on the crystallization and the detector performance of InAs/InAsSb superlattices[J].Mater. Rep., 2020, 34(S1):86-89. (in Chinese)
KLIPSTEIN P C, LIVNEH Y, GLOZMAN A, et al.. Modeling InAs/GaSb and InAs/InAsSb superlattice infrared detectors[J].J. Electron. Mater., 2014, 43(8):2984-2990.
VURGAFTMAN I, BELENKY G, LIN Y, et al.. Interband absorption strength in long-wave infrared type-Ⅱ superlattices with small and large superlattice periods compared to bulk materials[J].Appl. Phys. Lett., 2016, 108(22):222101-1-5.
TENNANT W E. "Rule 07" revisited:still a good heuristic predictor ofp/n HgCdTe photodiode performance?[J].J. Electron. Mater., 2010, 39(7):1030-1035.
WU D H, DURLIN Q, DEHZANGI A, et al.. High quantum efficiency mid-wavelength infrared type-Ⅱ InAs/InAs1-xSbx superlattice photodiodes grown by metal-organic chemical vapor deposition[J].Appl. Phys. Lett., 2019, 114(1):011104-1-5.
HADDADI A, CHEN G, CHEVALLIER R, et al.. InAs/InAs1-xSbx type-Ⅱ superlattices for high performance long wavelength infrared detection[J].Appl. Phys. Lett., 2014, 105(12):121104.
KIM H S, CELLEK O O, LIN Z Y, et al.. Long-wave infrared nBn photodetectors based on InAs/InAsSb type-Ⅱ superlattices[J].Appl. Phys. Lett., 2012, 101(16):161114-1-3.
HUANG J L, MA W Q, CAO Y L, et al.. Mid wavelength type Ⅱ InAs/GaSb superlattice photodetector using SiOxNy passivation[J].Jpn. J. Appl. Phys., 2012, 51(7):074002-1-3.
HOSTUT M, TANSEL T, KILIC A, et al.. The detailed analysis of wavefunction overlaps for InAs/AlSb/GaSb based N-structure type-Ⅱ SL pin photodetectors[J].Phys. Scr., 2019, 94(7):075007.
CHEN W, DENG Z, GUO D Q, et al.. Demonstration of InAs/InGaAs/GaAs quantum dots-in-a-well mid-wave infrared photodetectors grown on silicon substrate[J].J. Lightwave Technol., 2018, 36(13):2572-2581.
HWANG J, KU Z, JEON J, et al.. Plasmonic-layered InAs/InGaAs quantum-dots-in-a-well pixel detector for spectral-shaping and photocurrent enhancement[J].Nanomaterials, 2020, 10(9):1827-1-14.
DU P, FANG X, ZHAO H B, et al.. Mid- and long-infrared emission properties of InxGa1-xAsySb1-y quaternary alloy with type-Ⅱ InAs/GaSb superlattice distribution[J].J. Alloys Compd., 2020, 847:156390.
0
Views
338
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution