浏览全部资源
扫码关注微信
1.重庆安全技术职业学院, 重庆 404020
2.重庆海关技术中心, 重庆 400020
3.重庆三峡职业学院, 重庆 404155
Published:2021-01,
Received:06 October 2020,
Accepted:2020-10-26
移动端阅览
ZHEN-PING LIU, KE-JING PANG, RONG JIANG, et al. Synthesis, Characterization of Silicon Quantum Dots and High Sensitivity Sensing for Cu2+. [J]. Chinese journal of luminescence, 2021, 42(1): 73-82.
ZHEN-PING LIU, KE-JING PANG, RONG JIANG, et al. Synthesis, Characterization of Silicon Quantum Dots and High Sensitivity Sensing for Cu2+. [J]. Chinese journal of luminescence, 2021, 42(1): 73-82. DOI: 10.37188/CJL.20200292.
通过一步无溶剂法合成了具有较好发光稳定性和水溶性的硅量子点(Silicon quantum dots,Si-QDs),并利用透射电镜(TEM)、红外吸收光谱(IR)、X射线光电子能谱(XPS)、X射线衍射(XRD)和荧光光谱等手段对其进行了表征。试验发现,Si-QDs在378 nm的激发光照射下,可产生峰值位于468 nm的宽带发光;在水溶液中,添加适量Cu
2+
可对Si-QDs的发光产生静态猝灭。利用荧光信号猝灭程度与Cu
2+
浓度之间稳定的相关性可实现对Cu
2+
的定量检测。优化条件下,Si-QDs荧光强度变化与Cu
2+
浓度在16.7~1 670 nmol·L
-1
范围内呈稳定的线性相关性,(
F
0
-
F
)/
F
0
=0.18808ln
C
(Cu
2+
)-0.41377(
R
2
=0.998),检出限低至4.7 nmol·L
-1
(
S
/
N
=3)。对多种实际水样品做了加标回收率试验,回收率介于89.47%~106.75%之间。本研究制备的Si-QDs用于水中Cu
2+
快速、高灵敏检测具有良好重复性和稳定性。
In this study
silicon quantum dots(Si-QDs) with good luminous stability and water solubility were synthesized by one-pot solvent-free method and characterized by the transmission electron microscopy(TEM)
infrared spectroscopy(IR)
X-ray photoelectron spectroscopy(XPS)
X-ray diffraction(XRD) and fluorescence spectroscopy. It was found in the experiment that the Si-QDs emit broadband luminescence at 478 nm under the excitation at 378 nm. The luminescence of Si-QDs can be quenched statically by adding Cu
2+
in aqueous solution. The stable correlation between the degree of quenching of fluorescence signal and the concentrations of Cu
2+
was used to realize the quantitative detection of Cu
2+
. Under the optimized conditions
there was a stable correlation between the fluorescence intensity change of Si-QDs and the concentrations of Cu
2+
in the range of 16.7-1 670 nmol·L
-1
(
F
0
-
F
)/
F
0
=0.18808ln
C
(Cu
2+
)-0.41377(
R
2
=0.998)
and the detection limit was down to 4.7 nmol·L
-1
(
S
/
N
=3). Several actual water samples were detected
the recovery rates ranged from 89.47% to 106.75%. The Si-QD prepared in this study had good repeatability and stability for the rapid and highly sensitive detection of Cu
2+
in water.
硅量子点荧光传感材料铜离子水
silicon quantum dotsfluorescence sensing materialcopper ionswater
HEPEL M, STOBIECKA M. Interactions of adsorbed albumin with underpotentially deposited copper on gold piezoelectrodes[J].Bioelectrochemistry, 2007, 70(1):155-164.
STOBIECKA M, HEPEL M, RADECKI J. Transient conformation changes of albumin adsorbed on gold piezoelectrodes[J].Electrochim. Acta, 2005, 50(25-26):4873-4887.
BARNHAM K J, MASTERS C L, BUSH A I. Neurodegenerative diseases and oxidative stress[J].Nat. Rev. Drug Discov., 2004, 3(3):205-214.
LIU H L, CUIS Q, SHIF, et al.. A diarylethene based multi-functional sensor for fluorescent detection of Cd2+ and colorimetric detection of Cu2+[J].Dyes Pigment., 2019, 161:34-43.
BAKHSH E M, KHAN S B, MARWANI H M, et al.. Efficient electrochemical detection and extraction of copper ions using ZnSe-CdSe/SiO2 core-shell nanomaterial[J].J. Ind. Eng. Chem., 2019, 73:118-127.
LIU J W, LU Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J].J. Am. Chem. Soc., 2007, 129(32):9838-9839.
MALEK A, BERA K, BISWAS S, et al.. Development of a next-generation fluorescent turn-on sensor to simultaneously detect and detoxify mercury in living samples[J].Anal. Chem., 2019, 91(5):3533-3538.
DONG Y, WANG R, LI G, et al.. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J].Anal. Chem., 2012, 84(14):6220-6224.
LV F T, FENG X L, TANG H W, et al.. Development of film sensors based on conjugated polymers for copper(Ⅱ) ion detection[J].Adv. Funct. Mater., 2011, 21(5):845-850.
GAO W, YANG Y T, HUO F J, et al.. An ICT colorimetric chemosensor and a non-ICT fluorescent chemosensor for the detection copper ion[J].Sens. Actuators B Chem., 2014, 193:294-300.
LIU G H, REN P P, YANG F, et al.. Two novel colorimetric probes (5-HMBA-FH and 3-HMBA-FH) based on fluorescein for copper(Ⅱ) ion detection[J].Can. J. Chem., 2018, 96(12):1037-1045.
FEN Y W, MAHMOOD W, YUNUS WM M, et al.. Optical properties of cross-linked chitosan thin film for copper ion detection using surface plasmon resonance technique[J].Opt. Appl., 2011, 41(4):999-1013.
LEE S J, LEE S S, LEE J Y, et al.. A functionalized inorganic nanotube for the selective detection of copper(Ⅱ) ion[J].Chem. Mater., 2006, 18(20):4713-4715.
MEI L, XIANG Y, LI N, et al.. A new fluorescent probe of rhodamine B derivative for the detection of copper ion[J].Talanta, 2007, 72(5):1717-1722.
LU C, LIN JM, HUIE C W, et al.. Simultaneous determination of copper(Ⅱ) and cobalt(Ⅱ) by ion chromatography coupled with chemiluminescent detection[J].Anal. Sci., 2003, 19(4):557-561.
ZHENG Y, TANG H S, WANG X Y, et al.. Facile synthesis and properties of aqueous CdTe quantum dots for high-sensitive copper(Ⅱ) ion detection[J].Nano, 2017, 12(12):1750151-1-9.
LIU Y S, ZHAO Y N, ZHANG Y Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(Ⅱ) ion detection[J].Sens. Actuators B Chem., 2014, 196:647-652.
SHARMA A K, PRIYA, KAITH B S, et al.. Enzymatic construction of quinine derivative of dextrin/PVA based hybrid gel film for the simultaneous detection and removal of copper and lead ions in real water samples[J].Chem. Eng. J., 2020, 382:122891.
季洪雷, 周青超, 潘俊, 等.量子点液晶显示背光技术[J].中国光学, 2017, 10(5):666-680.
JI H L, ZHOU Q C, PAN J, et al.. Advances and prospects in quantum dots basedbacklights[J].Chin. Opt., 2017, 10(5):666-680. (in Chinese)
张锋, 薛建设, 喻志农, 等.量子点发光在显示器件中的应用[J].液晶与显示, 2012, 27(2):163-172.
ZHANG F, XUE J S, YU Z N, et al.. Quantum-dot light emitting device for displays[J].Chin. J. Liq. Cryst. Disp., 2012, 27(2):163-172. (in Chinese)
袁曦, 郑金桔, 李海波, 等. Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813.
YUAN X, ZHENG J J, LI H B, et al.. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J].Chin. Opt., 2015, 8(5):806-813. (in Chinese)
KUMBHAKAR P.半导体量子点材料在Nd:YAG激光辐照下的非线性光学效应[J].光学精密工程, 2011, 19(2):228-236.
KUMBHAKAR P. Observation of nonlinear optical effects in some semiconductor quantum dot materials using Nd:YAG laser radiation[J].Opt. Precision Eng., 2011, 19(2):228-236. (in English
叶芸, 喻金辉, 林淑颜, 等.量子点背光技术的研究进展[J].中国光学, 2020, 13(1):14-27.
YE Y, YU J H, LIN S Y, et al.. Progress of quantum dot backlight technology[J].Chin. Opt., 2020, 13(1):14-27. (in Chinese)
邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH4气体检测[J].中国光学, 2018, 11(4):662-668.
XING X X, WANG X W, QIN H W, et al.. CH4 detection based on near-infrared luminescence of PbSe quantum dots[J].Chin. Opt., 2018, 11(4):662-668. (in Chinese)
WANG X F, YANG Y X, HUO D Q, et al.. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate[J].Microchim. Acta, 2020, 187(6):341.
NA M, CHEN Y L, HAN Y X, et al.. Determination of potassium ferrocyanide in table salt and salted food using a water-soluble fluorescent silicon quantum dots[J].Food Chem., 2019, 288:248-255.
XU Y L, NIU X Y, ZHANG H J, et al.. Switch-on fluorescence sensing of glutathione infood samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+ chemosensor[J].J. Agric. Food Chem., 2015, 63(6):1747-1755.
YE H L, CAI S J, LI S, et al.. One-pot microwave synthesis of water-dispersible, high fluorescence silicon nanoparticles and their imaging applications in vitro and in vivo[J].Anal. Chem., 2016, 88(23):11631-11638.
ZHONG Y L, SUN X T, WANG S Y, et al.. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging[J].ACS Nano, 2015, 9(6):5958-5967.
ZHONG Y L, PENG F, WEI X P, et al.. Inside cover:microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands[J].Angew. Chem. Int. Ed., 2012, 51(34):8396.
MA Y X, CHEN Y L, LIU J J, et al.. Ratiometric fluorescent detection of chromium(Ⅵ) in real samples based on dual emissive carbon dots[J].Talanta, 2018, 185:249-257.
HAN Y X, CHEN Y L, FENG J, et al.. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2, 4, 6-trinitrophenol in aqueous solution[J].Anal. Chem., 2017, 89(5):3001-3008.
JIA J, LIN B, GAO Y F, et al.. Highly luminescent N-doped carbon dots from black soya beans for free radical scavenging, Fe3+ sensing and cellular imaging[J].Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2019, 211:363-372.
MA S D, CHEN Y L, FENG J, et al.. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging[J].Anal. Chem., 2016, 88(21):10474-10481.
ZHONG Y L, PENG F, WEI X P, et al.. Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands[J].Angew. Chem. Int. Ed., 2012, 51(34):8485-8489.
MASTRONARDI M L, MAIER-FLAIG F, FAULKNER D, et al.. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals[J].Nano Lett., 2012, 12(1):337-342.
CULLIS A G, CANHAM L T, CALCOTT P D J. The structural and luminescence properties of porous silicon[J].J. Appl. Phys., 1997, 82(3):909-965.
黄伟其, 吕泉, 王晓允, 等.不同气体氛围下硅量子点的结构及其发光机理[J].物理学报, 2011, 60(1):698-703.
HUANG W Q, LV Q, WANG X Y, et al..The structure of silicon quantum dots and key factors for emission in different environment[J].Acta Phys. Sinica, 2011, 60(1):698-703. (in Chinese)
IQBAL A, TIAN Y J, WANG X D, et al.. Carbon dots prepared by solid state method via citric acid and 1, 10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+[J].Sens. Actuators B Chem., 2016, 237:408-415.
LIU H J, JIA L, WANG Y X, et al.. Ratiometric fluorescent sensor for visual determination of copper ions and alkaline phosphatase based on carbon quantum dots and gold nanoclusters[J].Anal. Bioanal. Chem., 2019, 411(12):2531-2543.
ANJANA R R, DEVI J S A, JAYASREE M, et al.. S, N-doped carbon dots as a fluorescent probe for bilirubin[J].Microchim. Acta, 2018, 185:11.
LIU Y H, DUAN W X, SONG W, et al.. Red emission B, N, S-co-doped carbon dots for colorimetric and fluorescent dual mode detection of Fe3+ ions in complex biological fluids and living cells[J].ACS Appl. Mater. Interfaces, 2017, 9(14):12663-12672.
YANG M, YU Y, SHEN F, et al.. Detection of copper ion with laser-induced fluorescence in a capillary electrophoresis microchip[J].Anal. Lett., 2010, 43(18):2883-2891.
李紫凡, 梅岭, 向宇, 等.一种增色检测铜离子的新型罗丹明B衍生物探针[J].分析化学, 2008, 36(7):915-919.
LI Z F, MEI L, XIANG Y, et al.. Novel colorogenic probe of rhodamine B derivative for the detection of copper ion[J].Chin. J. Anal. Chem., 2008, 36(7):915-919. (in Chinese)
孙延慧, 齐有啸, 申优, 等.基于RGO-Au-ZIF-8复合材料的电化学传感器制备及其在铅离子和铜离子同时检测中的应用[J].化学学报, 2020, 78(2):147-154.
SUN Y H, QI Y X, SHEN Y, et al.. Preparation of electrochemical sensor based on RGO-Au-ZIF-8 compositeand its application in simultaneous detection of lead ions and copper ions[J].Acta Chim. Sinica, 2020, 78(2):147-154. (in Chinese)
LIN M, CHO M S, CHOE W S, et al.. Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion[J].Biosens. Bioelectron., 2010, 26(2):940-945.
0
Views
116
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution