浏览全部资源
扫码关注微信
1.上海科技大学 物质科学与技术学院, 上海 201210
2.中国科学院 上海高等研究院, 上海 201210
Published:2021-01,
Received:29 September 2020,
Accepted:2020-10-29
移动端阅览
MENG-ZHEN CHEN, JING SUN, ZHONG-YANG WANG. Size Effect and Luminescence Properties of MAPbBr3 and MAPbBr3/(OA)2PbBr4 Core-shell Materials. [J]. Chinese journal of luminescence, 2021, 42(1): 61-72.
MENG-ZHEN CHEN, JING SUN, ZHONG-YANG WANG. Size Effect and Luminescence Properties of MAPbBr3 and MAPbBr3/(OA)2PbBr4 Core-shell Materials. [J]. Chinese journal of luminescence, 2021, 42(1): 61-72. DOI: 10.37188/CJL.20200286.
利用配体辅助共沉淀法和超高速离心分别制得了3种不同尺寸的甲胺溴化铅MAPbBr
3
与核壳结构MAPbBr
3
/(OA)
2
PbBr
4
(辛胺溴化铅)纳米颗粒,并对其形貌结构和发光性能进行了表征。紫外-可见吸收光谱和室温荧光(PL)光谱测试表明,因量子局限效应,MAPbBr
3
与核壳结构MAPbBr
3
/(OA)
2
PbBr
4
纳米颗粒都表现出明显的尺寸依赖带隙蓝移。低温PL光谱表明,壳层对MAPbBr
3
纳米颗粒的相变有抑制作用,声子能量随尺寸增大而增大,但与MAPbBr
3
相比,核壳结构的声子能量整体较小。时间分辨PL光谱研究表明,MAPbBr
3
纳米颗粒PL衰减呈双指数衰减,随着尺寸增大,短寿命从1.18 ns增大到1.55 ns,长寿命从4.49 ns增大到9.63 ns。而核壳结构中,由于壳层对核表面缺陷强的钝化,PL几乎呈单指数衰减,且随尺寸增大,寿命从7.34 ns增大到17.36 ns,明显高于MAPbBr
3
纳米颗粒长寿命。本文对提高MAPbBr
3
发光稳定性和实现高性能器件具有重要指导意义。
The methylamine lead bromide MAPbBr
3
and MAPbBr
3
/(OA)
2
PbBr
4
(octylamine lead bromide) of core-shell structure nanoparticles(NPs) were synthesized by ligand-assisted co-precipitation method
and three different sizes NPs were obtained by ultra-high-speed centrifugation
respectively. Then
their morphology and photoluminescence(PL) properties were characterized. The UV-Vis absorption and room temperature PL spectra show that MAPbBr
3
and core-shell MAPbBr
3
/(OA)
2
PbBr
4
NPs both exhibit a significant size-dependent band gap blue shift due to the quantum confinement effect. The low-temperature PL spectra indicate that the shell layer could suppress the phase transition of internal MAPbBr
3
and the phonon energy increases with the increasing size. However
compared with MAPbBr
3
the phonon energy of the core-shell MAPbBr
3
NPs is smaller. The time-resolved PL measurements reveal that the PL decay of MAPbBr
3
NPs is dual exponential
and the short lifetime and long lifetime increase from 1.18 ns to 1.55 ns and from 4.49 ns to 9.63 ns with the size increasing
respectively. However
the PL decay of core-shell MAPbBr
3
/(OA)
2
PbBr
4
NPs is single exponential because the surfaces defects of core were strong passivated by the shell layer
and the long lifetime increases from 7.34 ns to 17.36 ns with the size increasing. The research of the PL properties of MAPbBr
3
NPs has important guiding significance to improve the stability and realize high-performance devices.
钙钛矿尺寸效应核壳结构发光性能
perovskitessize effectcore-shell structureluminescent properties
GONZALEZ-CARRERO S, FRANCÉS-SORIANO L, GONZÁLEZ-BÉJAR M, et al.. The luminescence of CH3NH3PbBr3 perovskite nanoparticles crests the summit and their photostability under wet conditions is enhanced[J].Small, 2016, 12(38):5245-5250.
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Lett., 2015, 15(6):3692-3696.
AKKERMAN Q A, MOTTI S G, KANDADA A R S, et al.. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control[J].J. Am. Chem. Soc., 2016, 138(3):1010-1016.
LOU S Q, XUAN T T, WANG J. (Invited) Stability:a desiderated problem for the lead halide perovskites[J].Opt. Mater. X, 2019, 1:100023-1-17.
NIU G D, LI W Z, LI J W, et al.. Enhancement of thermal stability for perovskite solar cells through cesium doping[J].RSC Adv., 2017, 7(28):17473-17479.
LIU M, ZHAO J T, LUO Z L, et al.. Unveiling solvent-related effect on phase transformations in CsBr-PbBr2 system:coordination and ratio of precursors[J].Chem. Mater., 2018, 30(17):5846-5852.
KO Y H, PRABHAKARAN P, JALALAH M, et al.. Correlating nano black spots and optical stability in mixed halide perovskite quantum dots[J].J. Mater. Chem. C, 2018, 6(29):7803-7813.
KULBAK M, GUPTA S, KEDEM N, et al.. Cesium enhances long-term stability of lead bromide perovskite-based solar cells[J].J. Phys. Chem. Lett., 2016, 7(1):167-172.
BU T L, LI J, HUANG W C, et al.. Surface modification via self-assembling large cations for improved performance and modulated hysteresis of perovskite solar cells[J].J. Mater. Chem. A, 2019, 7(12):6793-6800.
SASAKI H, KAMATA N, HONDA Z, et al.. Improved thermal stability of CsPbBr3 quantum dots by ligand exchange and their application to light-emitting diodes[J].Appl. Phys. Express, 2019, 12(3):035004-1-4.
HILLS-KIMBALL K, NAGAOKA Y, CAO C, et al.. Synthesis of formamidinium lead halide perovskite nanocrystals through solid-liquid-solid cation exchange[J].J. Mater. Chem. C, 2017, 5(23):5680-5684.
YU D J, YIN C Y, CAO F,et al.. Enhancing optoelectronic properties of low-dimensional halide perovskite via ultrasonic-assisted template refinement[J].ACS Appl. Mater. Interfaces, 2017, 9(45):39602-39609.
PAN A Z, HE B, FAN X Y, et al.. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals:the role of organic acid, base, and cesium precursors[J].ACS Nano, 2016, 10(8):7943-7954.
KRIEG F, OCHSENBEIN S T, YAKUNIN S, et al.. Colloidal CsPbX3(X=Cl, Br, I) nanocrystals 2.0:zwitterionic capping ligands for improved durability and stability[J].ACS Energy Lett., 2018, 3(3):641-646.
CHO H, KIM J S, WOLF C, et al.. High-efficiency polycrystalline perovskite light-emitting diodes based on mixed cations[J].ACS Nano, 2018, 12(3):2883-2892.
CHAUDHURI R G, PARIA S. Core/shell nanoparticles:classes, properties, synthesis mechanisms, characterization, and applications[J].Chem. Rev., 2012, 112(4):2373-2433.
YORDANOV G G, YOSHIMURA H, DUSHKIN C D. Phosphine-free synthesis of metal chalcogenide quantum dots by means of in situ-generated hydrogen chalcogenides[J].Colloid Poly. Sci., 2008, 286(6-7):813-817.
LIU Y F, YU J S. Selective synthesis of CdTe and high luminescence CdTe/CdS quantum dots:the effect of ligands[J].J. Colloid Interface Sci., 2009, 333(2):690-698.
SEO G, SEO J, RYU S, et al.. Enhancing the performance of sensitized solar cells with PbS/CH3NH3PbI3 core/shell quantum dots[J].J. Phys. Chem. Lett., 2014, 5(11):2015-2020.
OWEN J, BRUS L. Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots[J].J. Am. Chem. Soc., 2017, 139(32):10939-10943.
HOU S C, GUO Y Z, TANG Y G, et al.. Synthesis and stabilization of colloidal perovskite nanocrystals by multidentate polymer micelles[J].ACS Appl. Mater. Interfaces, 2017, 9(22):18417-18422.
ZHONG Q X, CAO M H, HU H C, et al.. One-pot synthesis of highly stable CsPbBr3@SiO2 core-shell nanoparticles[J].ACS Nano, 2018, 12(8):8579-8587.
BHAUMIK S, VELDHUIS S A, NG Y F, et al.. Highly stable, luminescent core-shell type methylammonium-octylammonium lead bromide layered perovskite nanoparticles[J].Chem. Commun., 2016, 52(44):7118-7121.
SHI D, ADINOLFI V, COMIN R, et al.. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals[J].Science, 2015, 347(6221):519-522.
TANG Y, YAN N, WANG Z W, et al.. Precursor solution volume-dependent ligand-assisted synthesis of CH3NH3PbBr3 perovskite nanocrystals[J].J. Alloys Compd., 2019, 773:227-233.
DO T T H, DEL ÁGUILA A G, CUI C,et al.. Optical study on intrinsic exciton states in high-quality CH3NH3PbBr3 single crystals[J].Phys. Rev. B, 2017, 96(7):075308-1-9.
SOUFIANI A M, HUANG F Z, REECE P,et al.. Polaronic exciton binding energy in iodide and bromide organic-inorganic lead halide perovskites[J].Appl. Phys. Lett., 2015, 107(23):231902-1-5.
BRUS L. Electronic wave functions in semiconductor clusters:experiment and theory[J].J. Phys. Chem., 1986, 90(12):2555-2560.
SCHMIDT T, LISCHKA K, ZULEHNER W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors[J].Phys. Rev. B, 1992, 45(16):8989-8994.
GIBBS Z M, KIM H, WANG H, et al.. Temperature dependent band gap in PbX(X=S, Se, Te)[J].Appl. Phys. Lett., 2013, 103(26):262109-1-5.
DEY P, PAUL J, BYLSMA J, et al.. Origin of the temperature dependence of the band gap of PbS and PbSe quantum dots[J].Solid State Commun., 2013, 165:49-54.
LEE S M, MOON C J, LIM H, et al.. Temperature-dependent photoluminescence of cesium lead halide perovskite quantum dots:splitting of the photoluminescence peaks of CsPbBr3 and CsPb(Br/I)3 quantum dots at low temperature[J].J. Phys. Chem. C, 2017, 121(46):26054-26062.
MELONI S, PALERMO G, ASHARI-ASTANI N, et al.. Valence and conduction band tuning in halide perovskites for solar cell applications[J].J. Mater. Chem. A, 2016, 4(41):15997-16002.
WEHRENFENNIG C, LIU M Z, SNAITH H J, et al.. Charge carrier recombination channels in the low-temperature phase of organic-inorganic lead halide perovskite thin films[J].APL Mater., 2014, 2(8):081513-1-10.
KARAKUS M, JENSEN S A, D'ANGELO F, et al.. Phonon-electron scattering limits free charge mobility in methylammonium lead iodide perovskites[J].J. Phys. Chem. Lett., 2015, 6(24):4991-4996.
WU X X, TRINH M T, NIESNER D, et al.. Trap states in lead iodide perovskites[J].J. Am. Chem. Soc., 2015, 137(5):2089-2096.
WOLF C, KIM J S, LEE T W. Structural and thermal disorder of solution-processed CH3NH3PbBr3 hybrid perovskite thin films[J].ACS Appl. Mater. Interfaces, 2017, 9(12):10344-10348.
ONODA-YAMAMURO N, MATSUO T, SUGA H. Calorimetric and IR spectroscopic studies of phase transitions in methylammonium trihalogenoplumbates (Ⅱ)[J].J. Phys. Chem. Solids, 1990, 51(12):1383-1395.
KONG W G, YE Z Y, QI Z, et al.. Characterization of an abnormal photoluminescence behavior upon crystal-phase transition of perovskite CH3NH3PbI3[J].Phys. Chem. Chem. Phys., 2015, 17(25):16405-16411.
LI D H, WANG G M, CHENG H C, et al.. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals[J].Nat. Commun., 2016, 7:11330-1-8.
MILOT R L, EPERON G E, SNAITH H J, et al.. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films[J].Adv. Funct. Mater., 2015, 25(39):6218-6227.
FU Y P, WU T, WANG J, et al.. Stabilization of the metastable lead iodide perovskite phase via surface functionalization[J].Nano Lett., 2017, 17(4):4405-4414.
RUDIN S, REINECKE T L. Temperature-dependent exciton linewidths in semiconductor quantum wells[J].Phys. Rev. B, 1990, 41(5):3017-3027.
WOO H C, CHOI J W, SHIN J, et al.. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts[J].J. Phys. Chem. Lett., 2018, 9(14):4066-4074.
WRIGHT A D, VERDI C, MILOT R L, et al.. Electron-phonon coupling in hybrid lead halide perovskites[J].Nat. Commun., 2016, 7:11755-1-9.
QI S, GHOSH S, KUMAR P, et al.. Variations in the composition of the phases lead to the differences in the optoelectronic properties of MAPbBr3 thin films and crystals[J].J. Phys. Chem. C, 2018, 122(38):21817-21823.
SCHMITT-RINK S, MILLER D A B, CHEMLA D S. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites[J].Phys. Rev. B, 1987, 35(15):8113-8125.
LIN C, GONG K, KELLEY D F, et al.. Electron-phonon coupling in CdSe/CdS core/shell quantum dots[J].ACS Nano, 2015, 9(8):8131-8141.
WU K W, BERA A, MA C, et al.. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films[J].Phys. Chem. Chem. Phys., 2014, 16(41):22476-22481.
BARANOWSKI M, PLOCHOCKA P. Excitons in metal-halide perovskites[J].Adv. Energy Mater., 2020, 10(26):1903659-1-15.
ZHANG Z S, LONG R, TOKINA M V, et al.. Interplay between localized and free charge carriers can explain hot fluorescence in the CH3NH3PbBr3 perovskite:time-domain ab initio analysis[J].J. Am. Chem. Soc., 2017, 139(48):17327-17333.
TELFAH H, JAMHAWI A, TEUNIS M B, et al.. Ultrafast exciton dynamics in shape-controlled methylammonium lead bromide perovskite nanostructures:effect of quantum confinement on charge carrier recombination[J].J. Phys. Chem. C, 2017, 121(51):28556-28565.
XIE L Q, ZHANG T Y, CHEN L, et al.. Organic-inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy[J].Phys. Chem. Chem. Phys., 2016, 18(27):18112-18118.
JING P T, ZHENG J J, IKEZAWA M, et al.. Temperature-dependent photoluminescence of CdSe-core CdS/CdZnS/ZnS-multishell quantum dots[J].J. Phys. Chem. C, 2009, 113(31):13545-13550.
KAYANUMA Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape[J].Phys. Rev. B, 1988, 38(14):9797-9805.
GIL B, KAVOKIN A V. Giant exciton-light coupling in ZnO quantum dots[J].Appl. Phys. Lett., 2002, 81(4):748-750.
0
Views
404
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution