浏览全部资源
扫码关注微信
1.上海理工大学 材料科学与工程学院, 上海 200082
2.国家知识产权局专利局专利审查协作江苏中心化学发明审查部 高分子化学室, 江苏 苏州 215000
Published:2020-12,
Received:14 September 2020,
Accepted:2020-10-27
移动端阅览
HUAN WANG, JING XU, YU-QING HUANG, et al. Red Emissive Carbon Dots: Photoluminescence Mechanism, Modulation and Application Research. [J]. Chinese journal of luminescence, 2020, 41(12): 1579-1597.
HUAN WANG, JING XU, YU-QING HUANG, et al. Red Emissive Carbon Dots: Photoluminescence Mechanism, Modulation and Application Research. [J]. Chinese journal of luminescence, 2020, 41(12): 1579-1597. DOI: 10.37188/CJL.20200276.
红色荧光碳点(简称红光碳点,R-CDs)具有成像对比度好、空间分辨率高等优势,受到了研究者们的广泛关注。但目前报道的红光碳点往往存在荧光量子效率低、FWHM较宽且需要蓝绿光激发的缺陷,达不到实际应用需求。因此,进一步明确红光碳点发光机制、实现高荧光量子产率(PL QY)激发非依赖红光具有十分重要的意义。本文首先阐述了量子限域效应、表面状态、聚集效应等因素对碳点红光发射性质的作用机制;其次分析了红光碳点制备过程中前驱体、溶剂类型等的调控机制,并简要介绍了红光碳点在发光二极管及生物成像中的应用现状;最后,针对红光碳点的制备方法、性能调控及发展方向进行了展望。
Due to the advantages of excellent imaging contrast and high spatial resolution
red emissive carbon dots(R-CDs) have attracted intensive attention. However
most of the reported R-CDs exhibited low photoluminescence quantum yield(PL QY)
wide half peak-width(FWMH)
and excitation-dependence property(excited mainly by blue or green light)
which limits practical applications. Therefore
it is of great importance to furtherly elucidate the PL mechanism of R-CDs and achieve excitation-independent PL property as well as high PL QY. In this paper
the PL influencing factors of red emission including the quantum confinement effect
surface states and aggregation behaviors have been explained. Then
the regulatory mechanism of different reaction conditions such as the precursor and reaction reagent is investigated in details. Besides
we have briefly introduced the current applications of R-CDs in the fields of light emitting diodes and bio-imaging. Finally
attempts to realize the state-of-the-art performance of R-CDs is prospected.
红色荧光碳点荧光机理制备手段
red emissioncarbon dotsphotoluminescence mechanismsynthetic method
LI X M, RUI M C, SONG J Z, et al.. Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J].Adv. Funct. Mater., 2015, 25(31):4929-4947.
LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications[J].Chem. Soc. Rev., 2015, 44(1):362-381.
ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al.. Glowing graphene quantum dots and carbon dots:properties, syntheses, and biological applications[J].Small, 2015, 11(14):1620-1636.
贺平, 袁方龙, 王子飞, 等.基于碳量子点的光电器件应用新进展[J].物理化学学报, 2018, 34(11):1250-1263.
HE P, YUAN F L, WANG Z F, et al.. Growing carbon quantum dots for optoelectronic devices[J].Acta Phys. Chim. Sinica, 2018, 34(11):1250-1263. (in Chinese)
QU S N, ZHOU D, LI D, et al.. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering[J].Adv. Mater., 2016, 28(18):3516-3521.
EDA G, LIN Y Y, MATTEVI C, et al.. Blue photoluminescence from chemically derived graphene oxide[J].Adv. Mater., 2010, 22(4):505-509.
SK M A, ANANTHANARAYANAN A, HUANG L, et al.. Revealing the tunable photoluminescence properties of graphene quantum dots[J].J. Mater. Chem. C, 2014, 2(34):6954-6960.
LYU B, LI H J, XUE F F, et al.. Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process[J].Chem. Eng. J., 2020, 388:124285.
TAN X Y, LI Y C, LI X H, et al.. Electrochemical synthesis of small-sized red fluorescent graphene quantum dots as a bioimaging platform[J].Chem. Commun., 2015, 51(13):2544-2546.
YUAN F L, YUAN T, SUI L Z, et al.. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J].Nat. Commun., 2018, 9(1):2249.
YUAN F L, WANG Z B, LI X H, et al.. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J].Adv. Mater., 2017, 29(3):1604436.
WANG Z F, YUAN F L, LI X H, et al.. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes[J].Adv. Mater., 2017, 29(37):1702910.
ZHU S J, SONG Y B, ZHAO X H, et al.. The photoluminescence mechanism in carbon dots(graphene quantum dots, carbon nanodots, and polymer dots):current state and future perspective[J].Nano Res., 2015, 8(2):355-381.
LONG Y M, ZHOU C H, ZHANG Z L, et al.. Shifting and non-shifting fluorescence emitted by carbon nanodots[J].J. Mater. Chem., 2012, 22(13):5917-5920.
BAO L, ZHANG Z L, TIAN Z Q, et al.. Electrochemical tuning of luminescent carbon nanodots:from preparation to luminescence mechanism[J].Adv. Mater., 2011, 23(48):5801-5806.
DING H, YU S B, WEI J S, et al.. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J].ACS Nano, 2016, 10(1):484-491.
SUN S, ZHANG L, JIANG K, et al.. Toward high-efficient red emissive carbon dots:facile preparation, unique properties, and applications as multifunctional theranostic agents[J].Chem. Mater., 2016, 28(23):8659-8668.
HU S L, TRINCHI A, ATKIN P, et al.. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J].Angew. Chem. Int. Ed., 2015, 54(10):2970-2974.
LI D, JING P T, SUN L H, et al.. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots[J].Adv. Mater., 2018, 30(13):1705913-1-8.
朱金阳.碳纳米点发光性质调控及其在发光二极管中的应用[D].长春: 吉林大学, 2019.
ZHU J Y. Modulation on The Luminescent Properties of Carbon Dots and Their Applications in Light-emitting Diodes [D]. Changchun: Jilin University, 2019. (in Chinese)
YAN Y B, CHEN J, LI N, et al.. Systematic bandgap engineering of graphene quantum dots and applications for photocatalytic water splitting and CO2 reduction[J].ACS Nano, 2018, 12(4):3523-3532.
KWON W, KIM Y H, KIM J H, et al.. High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots[J].Sci. Rep., 2016, 6(1):24205.
XU M H, HE G L, LI Z H, et al.. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states[J].Nanoscale, 2014, 6(17):10307-10315.
HONG Y N, LAM J M Y, TANG B Z. Aggregation-induced emission[J].Chem. Soc. Rev., 2011, 40(11):5361-5388.
LUO J D, XIE Z L, LAM J W Y, et al.. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J].Chem. Commun., 2001, (18):1740-1741.
MEI J, LEUNG N L C, KWOK R T K, et al.. Aggregation-induced emission:together we shine, united we soar![J].Chem. Rev., 2015, 115(21):11718-11940.
JIA X F, LI J, WANG E K. Cu nanoclusters with aggregation induced emission enhancemen[J].Small, 2013, 9(22):3873-3879.
GAO M X, LIU C F, ZHU L W, et al.. A surfactant-assisted redox hydrothermal route to prepare highly photoluminescent carbon quantum dots with aggregation-induced emission enhancement properties[J].Chem. Commun., 2013, 49(73):8015-8017.
LIU Z X, WU Z L, GAO M X, et al.. Carbon dots with aggregation induced emission enhancement for visual permittivity detection[J].Chem. Commun., 2016, 52(10):2063-2066.
YANG H Y, LIU Y L, GUO Z Y, et al.. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission[J].Nat. Commun., 2019, 10(1):1789.
LI Y, LIN H C, LUO C H, et al.. Aggregation induced red shift emission of phosphorus doped carbon dots[J].RSC Adv., 2017, 7(51):32225-32228.
SHARMA V, TIWARI P, MOBIN S M. Sustainable carbon-dots:recent advances in green carbon dots for sensing and bioimaging[J].J. Mater. Chem. B, 2017, 5(45):8904-8924.
SHI X X, MENG H M, SUN Y Q, et al.. Far-red to near-infrared carbon dots:preparation and applications in biotechnology[J].Small, 2019, 15(48):1901507.
HU Y L, GENG X, ZHANG L, et al.. Nitrogen-doped carbon dots mediated fluorescent on-off assay for rapid and highly sensitive pyrophosphate and alkaline phosphatase detection[J].Sci. Rep., 2017, 7(1):5849-1-9.
QU D, ZHENG M, ZHANG L G, et al.. Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots[J].Sci. Rep., 2014, 4(1):5294-1-9.
GAO D, ZHAO H, CHEN X, et al.. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms[J].Mater. Today Chem., 2018, 9:103-113.
PAN L L, SUN S, ZHANG A D, et al.. Truly fluorescent excitation-dependent carbon dots and their applications in multicolor cellular imaging and multidimensional sensing[J].Adv. Mater., 2015, 27(47):7782-7787.
DING H, WEI J S, ZHONG N, et al.. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging[J].Langmuir, 2017, 33(44):12635-12642.
MIAO X, QU D, YANG D X, et al.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization[J].Adv. Mater., 2018, 30(1):1704740-1-8.
HOLÁ K, SUDOLSKÁ M, KALYTCHUK S, et al.. Graphitic nitrogen triggers red fluorescence in carbon dots[J].ACS Nano, 2017, 11(12):12402-12410.
SONG L, CUI Y Y, ZHANG C F, et al.. Microwave-assisted facile synthesis of yellow fluorescent carbon dots from o-phenylenediamine for cell imaging and sensitive detection of Fe3+ and H2O2[J].RSC Adv., 2016, 6(21):17704-17712.
ZHAI H Y, ZHENG B Z, YANG F, et al.. Synthesis of water-soluble fluorescent carbon dots from Setcreasea purpurea boom and its application for Br2 detection[J].Anal. Methods, 2018, 10(1):151-157.
JIANG K, SUN S, ZHANG L, et al.. Red, green, and blue luminescence by carbon dots:full-color emission tuning and multicolor cellular imaging[J].Angew. Chem. Int. Ed., 2015, 54(18):5360-5363.
LU S Y, SUI L Z, LIU J J, et al.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence[J].Adv. Mater., 2017, 29(15):1603443-1-6.
LIU J J, DONG Y Y, MA Y X, et al.. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO- probing and cell imaging[J].Nanoscale, 2018, 10(28):13589-13598.
YANG C H, ZHU S J, LI Z L, et al.. Nitrogen-doped carbon dots with excitation-independent long-wavelength emission produced by a room-temperature reaction[J].Chem. Commun., 2016, 52(80):11912-11914.
ZHENG M, LI Y, LIU S, et al.. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy[J].ACS Appl. Mater. Interfaces, 2016, 8(36):23533-23541.
GAO W L, SONG H H, WANG X, et al.. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo[J].ACS Appl. Mater. Interfaces, 2018, 10(1):1147-1154.
JIA Q Y, GE J C, LIU W M, et al.. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy[J].Adv. Mater., 2018, 30(3):1706090-1-8.
ZHU Z J, ZHAI Y L, LI Z H, et al.. Red carbon dots:optical property regulations and applications[J].Mater. Today, 2019, 30:52-79.
WANG H, SUN C, CHEN X R, et al.. Excitation wavelength independent visible color emission of carbon dots[J].Nanoscale, 2017, 9(5):1909-1915.
TIAN Z, ZHANG X T, LI D, et al.. Full-color inorganic carbon dot phosphors for white-light-emitting diodes[J].Adv. Opt. Mater., 2017, 5(19):1700416-1-9.
ZHU J Y, BAI X, BAI J L, et al.. Emitting color tunable carbon dots by adjusting solvent towards light-emitting devices[J].Nanotechnology, 2018, 29(8):085705.
DING H, WEI J S, ZHANG P, et al.. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths[J].Small, 2018, 14(22):1800612-1-10.
ZHAN J, GENG B J, WU K, et al.. A solvent-engineered molecule fusion strategy for rational synthesis of carbon quantum dots with multicolor bandgap fluorescence[J].Carbon, 2018, 130:153-163.
CHAO D Y, LYU W, LIU Y B, et al.. Solvent-dependent carbon dots and their applications in the detection of water in organic solvents[J].J. Mater. Chem. C, 2018, 6(28):7527-7532.
JIANG K, FENG X, GAO X, et al.. Preparation of multicolor photoluminescent carbon dots by tuning surface states[J].Nanomaterials, 2019, 9(4):529-1-12.
TAN C L, SU X Y, ZHOU C, et al.. Acid-assisted hydrothermal synthesis of red fluorescent carbon dots for sensitive detection of Fe(Ⅲ)[J].RSC Adv., 2017, 7(65):40952-40956.
LIU J J, LI D W, ZHANG K, et al.. One-step hydrothermal synthesis of nitrogen-doped conjugated carbonized polymer dots with 31% efficient red emission for in vivo imaging[J].Small, 2018, 14(15):1703919-1-10.
GALANDE C, MOHITE A D, NAUMOV A V, et al.. Quasi-molecular fluorescence from graphene oxide[J].Sci. Rep., 2011, 1:85.
FENG T L, ZENG Q S, LU S Y, et al.. Color-tunable carbon dots possessing solid-state emission for full-color light-emitting diodes applications[J].ACS Photonics, 2018, 5(2):502-510.
SHAO T L, WANG G D, AN X T, et al.. A reformative oxidation strategy using high concentration nitric acid for enhancing the emission performance of graphene quantum dots[J].RSC Adv., 2014, 4(89):47977-47981.
WANG Z, LIU Y, ZHEN S, et al.. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes[J]. Adv. Sci., 2020, 7(4):1902688.
YUAN T, MENG T, HE P, et al.. Carbon quantum dots:an emerging material for optoelectronic applications[J].J. Mater. Chem. C, 2019, 7(23):6820-6835.
LIU D H, LI H J, LYU B, et al.. Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots[J].Opt. Mater., 2019, 89:468-472.
CAI Q Y, LI J, GE J, et al.. A rapid fluorescence "switch-on" assay for glutathione detection by using carbon dots-MnO2 nanocomposites[J].Biosens. Bioelectron., 2015, 72:31-36.
LIU C J, ZHANG P, ZHAI X Y, et al.. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J].Biomaterials, 2012, 33(13):3604-3613.
CHEN J, WEI J S, ZHANG P, et al.. Red-emissive carbon dots for fingerprints detection by spray method:coffee ring effect and unquenched fluorescence in drying process[J].ACS Appl. Mater. Interfaces, 2017, 9(22):18429-18433.
SARKAR S, SUDOLSKÁ M, DUBECKY' M, et al.. Graphitic nitrogen doping in carbon dots causes red-shifted absorption[J].J. Phys. Chem. C, 2016, 120(2):1303-1308.
SUN X, LI H J, OU N Q, et al.. Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping[J].Molecules, 2019, 24(2):344-1-13.
HAN M, ZHU S J, LU S Y, et al.. Recent progress on the photocatalysis of carbon dots:classification, mechanism and applications[J].Nano Today, 2018, 19:201-218.
ZHU J Y, BAI X, ZHAI Y, et al.. Carbon dots with efficient solid-state photoluminescence towards white light-emitting diodes[J].J. Mater. Chem. C, 2017, 5(44):11416-11420.
崔博, 冯晓婷, 张峰, 等.碳量子点荧光材料在白光LED中的应用[J].新型炭材料, 2017, 32(5):385-401.
CUI B, FENG X T, ZHANG F, et al.. The use of carbon quantum dots as fluorescent materials in white LEDs[J].New Carbon Mater., 2017, 32(5):385-401. (in Chinese)
PUST P, WEILER V, HECHT C, et al.. Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material[J].Nat. Mater., 2014, 13(9):891-896.
HE P, SHI Y, MENG T, et al.. Recent advances in white light-emitting diodes of carbon quantum dots[J].Nanoscale, 2020, 12(8):4826-4832.
LIU J J, GENG Y J, LI D W, et al.. Deep red emissive carbonized polymer dots with unprecedented narrow full width at half maximum[J].Adv. Mater., 2020, 32(17):1906641.
HUANG L, ZHU Y W, ZHANG X J, et al.. HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1-xF6:xMn4+ for warm white light-emitting diodes[J].Chem. Mater., 2016, 28(5):1495-1502.
ZHAI Y C, WANG Y, LI D, et al.. Red carbon dots-based phosphors for white light-emitting diodes with color rendering index of 92[J].J. Colloid Interface Sci., 2018, 528:281-288.
TAO H Q, YANG K, MA Z, et al.. In vivo NIR fluorescence imaging, biodistribution, and toxicology of photoluminescent carbon dots produced from carbon nanotubes and graphite[J].Small, 2012, 8(2):281-290.
吕春祥, 李利平.荧光碳点的制备及其肿瘤诊断和治疗中的应用研究进展[J].新型炭材料, 2018, 33(1):12-18.
LV C X, LI L P. Progress in research on the preparation of carbon dots and their use in tumor theranostics[J].New Carbon Mater., 2018, 33(1):12-18. (in Chinese)
LIU Y F, GOU H L, HUANG X, et al.. Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-Ⅱ two-photon bioimaging[J].Nanoscale, 2020, 12(3):1589-1601.
SUN S, CHEN J Q, JIANG K, et al.. Ce6-modified carbon dots for multimodal-imaging-guided and single-NIR-laser-triggered photothermal/photodynamic synergistic cancer therapy by reduced irradiation power[J].ACS Appl. Mater. Interfaces, 2019, 11(6):5791-5803.
0
Views
874
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution