浏览全部资源
扫码关注微信
1.广东工业大学 物理与光电工程学院, 广东 广州 510006
2.广州医科大学 生物医学工程系, 广东 广州 511436
3.广东技术师范大学 光电工程学院, 广东 广州 510665
Published:2020-12,
Received:11 September 2020,
Accepted:2020-10-29
移动端阅览
RU KANG, SHAO-AN ZHANG, HUI-WANG LIAN, et al. Research Progress on Design Strategy and Application of Persistent Luminescence Nanotheranostics. [J]. Chinese journal of luminescence, 2020, 41(12): 1614-1626.
RU KANG, SHAO-AN ZHANG, HUI-WANG LIAN, et al. Research Progress on Design Strategy and Application of Persistent Luminescence Nanotheranostics. [J]. Chinese journal of luminescence, 2020, 41(12): 1614-1626. DOI: 10.37188/CJL.20200275.
长余辉纳米材料具有激发/发射分离、成像分辨率高、大面积成像与操作模式便捷等优点,在高灵敏度生物医学光学诊断领域引起了广泛关注。然而,随着诊疗一体化需求的增加,现有长余辉纳米材料功能的单一性阻碍了其在微型化、集成化诊疗上的快速发展。基于此,本综述针对生物医学诊疗集成一体化的长余辉纳米诊疗剂开发,展示了相应的设计策略和合成方法,并指出了长余辉纳米诊疗剂的研究前景、机遇及未来的发展方向。
In virtue of the separation of excitation and emission
background-free autofluorescence
large area imaging and convenient operation
persistent luminescence nanoparticles(PLNPs) have attracted widespread attention in the field of optical diagnosis. However
with the increasing demand for integrated diagnosis and treatment
the single function of the existing PLNPs limits their technological breakthroughs in the miniaturized and integrated diagnosis and treatment units. Herein
in this review
PLNPs which can meet the integration requirements of biomedical diagnosis and treatment are discussed. Then the design strategies of developing these nanotheranostics are elaborated. Finally
the research opportunities for PLNPs nanotheranostics are prospected.
长余辉纳米诊疗剂生物成像药物治疗
persistent luminescencenanotheranosticsbioimagingtreatment
PAN Z, LU Y, LIU F J N M. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J].Nat. Mater., 2012, 11(1):58-63.
LI Y, GECEVICIUS M, QIU J. Long persistent phosphors—from fundamentals to applications[J].Chem. Soc. Rev., 2016, 45(8):2090-2136.
WANG J, MA Q, WANG Y, et al.. Recent progress in biomedical applications of persistent luminescence nanoparticles[J].Nanoscale, 2017, 9(19):6204-6218.
马青兰, 黄远明.绿色长余辉铝酸盐在信息显示领域的应用探索[J].液晶与显示, 2010, 25(03):325-328.
MA Q L, HUANG Y M. Application of green aluminates phosphors in information display field[J].Chin. J. Liq. Cryst. Disp., 2010, 25(3):325-328. (in Chinese)
CHI F F, WEI X T, JIANG B, et al.. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors[J].Dalton Trans., 2018, 47(4):1303-1311.
DE CLERCQ O Q, POELMAN D. Local, temperature-dependent trapping and detrapping in the LiGa5O8:Cr infrared emitting persistent phosphor[J].ECS J. Solid State Sci. Technol., 2018, 7(1):R3171-R3175.
LYU T S, DORENBOS P. Charge carrier trapping processes in lanthanide doped LaPO4, GdPO4, YPO4, and LuPO4[J].J. Mater. Chem. C, 2018, 6(2):369-379.
ABDUKAYUM A, CHEN J T, ZHAO Q, et al.. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J].J. Am. Chem. Soc., 2013, 135(38):14125-14133.
NIE J M, LI Y, HAN G, et al.. In vivo clearable inorganic nanophotonic materials:designs, materials and applications[J].Nanoscale, 2019, 11(27):12742-12754.
SUN S K, WANG H F, YAN X P. Engineering persistent luminescence nanoparticles for biological applications:from biosensing/bioimaging to theranostics[J].Acc. Chem. Res., 2018, 51(5):1131-1143.
CHEN L J, SUN S K, WANG Y, et al.. Activatable multifunctional persistent luminescence nanoparticle/copper sulfide nanoprobe for in vivo luminescence imaging-guided photothermal therapy[J].ACS Appl. Mater. Interfaces, 2016, 8(48):32667-32674.
MALDINEY T, BESSIÈRE A, SEGUIN J, et al.. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J].Nat. Mater., 2014, 13(4):418-426.
SHI J P, SUN X, ZHU J F, et al.. One-step synthesis of amino-functionalized ultrasmall near infrared-emitting persistent luminescent nanoparticles for in vitro and in vivo bioimaging[J].Nanoscale, 2016, 8(18):9798-9804.
LI Y J, YAN X P. Synthesis of functionalized triple-doped zinc gallogermanate nanoparticles with superlong near-infrared persistent luminescence for long-term orally administrated bioimaging[J].Nanoscale, 2016, 8(32):14965-14970.
KANG R, DOU X J, LIAN H W, et al.. SrAl12O19:Fe3+ @3-aminopropyl triethoxysilane:ambient aqueous stable near-infrared persistent luminescent nanocomposites[J].J. Am. Ceram. Soc., 2020, 103(1):258-265.
LI Y, CHEN R, LI Y, et al.. Folic acid-conjugated chromium(Ⅲ) doped nanoparticles consisting of mixed oxides of zinc, gallium and tin, and possessing near-infrared and long persistent phosphorescence for targeted imaging of cancer cells[J].Microchim. Acta, 2015, 182(9):1827-1834.
OZDEMIR T, LU Y C, KOLEMEN S, et al.. Generation of singlet oxygen by persistent luminescent nanoparticle-photosensitizer conjugates:a proof of principle for photodynamic therapy without light[J].ChemPhotoChem, 2017, 1(5):183-187.
WANG J, MA Q Q, HU X X, et al.. Autofluorescence-free targeted tumor imaging based on luminous nanoparticles with composition-dependent size and persistent luminescence[J].ACS Nano, 2017, 11(8):8010-8017.
WU S Q, YANG C X, YAN X P. A dual-functional persistently luminescent nanocomposite enables engineering of mesenchymal stem cells for homing and gene therapy of glioblastoma[J].Adv. Funct. Mater., 2017, 27(11):1604992-1-7.
XUE Z L, LI X L, LI Y B, et al.. X-ray-activated near-infrared persistent luminescent probe for deep-tissue and renewable in vivo bioimaging[J].ACS Appl. Mater. Interfaces, 2017, 9(27):22132-22142.
ZHAO H X, LIU C X, GU Z, et al.. Persistent luminescent nanoparticles containing hydrogels for targeted, sustained, and autofluorescence-free tumor metastasis imaging[J].Nano Lett., 2019, 20(1):252-260.
WONG X Y, SENA-TORRALBA A, ÁLVAREZ-DIDUK R, et al.. Nanomaterials for nanotheranostics:tuning their properties according to disease needs[J].ACS Nano, 2020, 14(3):2585-2627.
KANG R, NIE J M, DOU X J, et al.. Tunable NIR long persistent luminescence and discovery of trap-distribution-dependent excitation enhancement in transition metal doped weak-crystal-field CaZnGe2O6[J].J. Alloys Compd., 2018, 735:692-699.
LIANG L, CHEN N, JIA Y Y, et al.. Recent progress in engineering near-infrared persistent luminescence nanoprobes for time-resolved biosensing/bioimaging[J].Nano Res., 2019, 12(6):1279-1292.
WANG J, LI J L, YU J N, et al.. Large hollow cavity luminous nanoparticles with near-infrared persistent luminescence and tunable sizes for tumor afterglow imaging and chemo-/photodynamic therapies[J].ACS Nano, 2018, 12(5):4246-4258.
ZHANG J F, ZHANG J, LI W Y, et al.. Degradable hollow mesoporous silicon/carbon nanoparticles for photoacoustic imaging-guided highly effective chemo-thermal tumor therapy in vitro and in vivo [J].Theranostics, 2017, 7(12):3007-3020.
SHI J P, SUN M, SUN X, et al.. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging[J].J. Mater. Chem. B, 2016, 4(48):7845-7851.
SHEN T T, ZHANG Y, KIRILLOV A M, et al.. Two-photon sensitized hollow Gd2O3:Eu3+ nanocomposites for real-time dual-mode imaging and monitoring of anticancer drug release[J].Chem. Commun., 2016, 52(7):1447-1450.
SLOWING I I, TREWYN B G, GIRI S, et al.. Mesoporous silica nanoparticles for drug delivery and biosensing applications[J].Adv. Funct. Mater., 2007, 17(8):1225-1236.
HUANG S S, CHENG Z Y, MA P A, et al.. Luminescent GdVO4:Eu3+ functionalized mesoporous silicananoparticles for magnetic resonance imaging and drug delivery[J].Dalton Trans., 2013, 42(18):6523-6530.
CHENG S H, LIAO W N, CHEN L M, et al.. pH-controllable release using functionalized mesoporous silicananoparticles as an oral drug delivery system[J].J. Mater. Chem., 2011, 21(20):7130-7137.
YUAN L, TANG Q Q, YANG D, et al.. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery[J].J. Phys. Chem. C, 2011, 115(20):9926-9932.
MANZANO M, VALLET-REGÍ M. Mesoporous silica nanoparticles for drug delivery[J].Adv. Funct. Mater., 2020, 30(2):1902634.
QIAO Z A, ZHANG L, GUO M Y, et al.. Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide[J].Chem. Mater., 2009, 21(16):3823-3829.
SHI J P, SUN X, ZHENG S H, et al.. A new near-infrared persistent luminescence nanoparticle as a multifunctional nanoplatform for multimodal imaging and cancer therapy[J].Biomaterials, 2018, 152:15-23.
LI Z J, ZHANG Y W, WU X, et al.. In vivo repeatedly charging near-infrared-emitting mesoporous SiO2/ZnGa2O4:Cr3+ persistent luminescence nanocomposites[J].Adv. Sci., 2015, 2(3):1500001.
GUERRERO-MARTÍNEZ A, PÉREZ-JUSTE J, LIZ-MARZÁN L M. Recent progress on silica coating of nanoparticles and related nanomaterials[J].Adv. Mater., 2010, 22(11):1182-1195.
ZOU R, HUANG J J, SHI J P, et al.. Silica shell-assisted synthetic route for mono-disperse persistent nanophosphors with enhanced in vivo recharged near-infrared persistent luminescence[J].Nano Res., 2017, 10(6):2070-2082.
LI F F, WANG F Y, HU X, et al.. A long-persistent phosphorescent chemosensor for the detection of TNP based on CaTiO3:Pr3+@SiO2 photoluminescence materials[J].RSC Adv., 2018, 8(30):16603-16610.
DAI W B, LEI Y F, YE S, et al.. Mesoporous nanoparticles Gd2O3@mSiO2/ZnGa2O4:Cr3+, Bi3+ as multifunctional probes for bioimaging[J].J. Mater. Chem. B, 2016, 4(10):1842-1852.
LIN X H, SONG L, CHEN S, et al.. Kiwifruit-like persistent luminescent nanoparticles with high-performance and in situ activable near-infrared persistent luminescence for long-term in vivo bioimaging[J].ACS Appl. Mater. Interfaces, 2017, 9(47):41181-41187.
QIU X C, ZHU X J, XU M, et al.. Hybrid nanoclusters for near-infrared to near-infrared upconverted persistent luminescence bioimaging[J].ACS Appl. Mater. Interfaces, 2017, 9(38):32583-32590.
LU Z D, YIN Y D. Colloidal nanoparticle clusters:functional materials by design[J].Chem. Soc. Rev., 2012, 41(21):6874-6887.
CHEN O, RIEDEMANN L, ETOC F, et al.. Magneto-fluorescent core-shell supernanoparticles[J].Nat. Commun., 2014, 5:5093-1-16.
KIM J, LEE J E, LEE S H, et al.. Designed fabrication of a multifunctional polymer nanomedical platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery[J].Adv. Mater., 2008, 20(3):478-483.
MENG H, LEONG W, LEONG K W, et al.. Walking the line:the fate of nanomaterials at biological barriers[J].Biomaterials, 2018, 174:41-53.
NABIL G, BHISE K, SAU S, et al.. Nano-engineered delivery systems for cancer imaging and therapy:recent advances, future direction and patent evaluation[J].Drug Discov. Today, 2019, 24(2):462-491.
SONG G S, HAO J L, LIANG C, et al.. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform[J].Angew. Chem. Int. Ed., 2016, 55(6):2122-2126.
LU G, LI S Z, GUO Z, et al.. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J].Nat. Chem., 2012, 4(4):310-316.
FÉREY G. Hybrid porous solids:past, present, future[J].Chem. Soc. Rev., 2008, 37(1):191-214.
HORIKE S, SHIMOMURA S, KITAGAWA S. Soft porous crystals[J].Nat. Chem., 2009, 1(9):695-704.
CHEN L, YE J W, WANG H P, et al.. Ultrafast water sensing and thermal imaging by a metal-organic framework with switchable luminescence[J].Nat. Commun., 2017, 8:15985-1-10.
MURRAY L J, DINCǍ M, LONG J R. Hydrogen storage in metal-organic frameworks[J].Chem. Soc. Rev., 2009, 38(5):1294-1314.
LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J].Chem. Soc. Rev., 2009, 38(5):1477-1504.
LEE J, FARHA O K, ROBERTS J, et al.. Metal-organic framework materials as catalysts[J].Chem. Soc. Rev., 2009, 38(5):1450-1459.
ALLENDORF M D, BAUER C A, BHAKTA R K, et al.. Luminescent metal-organic frameworks[J].Chem. Soc. Rev., 2009, 38(5):1330-1352.
ZHAO H X, SHU G, ZHU J Y, et al.. Persistent luminescent metal-organic frameworks with long-lasting near infrared emission for tumor site activated imaging and drug delivery[J].Biomaterials, 2019, 217:119332.
ZHENG H Q, ZHANG Y N, LIU L F, et al.. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J].J. Am. Chem. Soc., 2016, 138(3):962-968.
LV Y, DING D D, ZHUANG Y X, et al.. Chromium-doped zinc gallogermanate@zeolitic imidazolate framework-8:a multifunctional nanoplatform for rechargeable in vivo persistent luminescence imaging and pH-responsive drug release[J].ACS Appl. Mater. Interfaces, 2019, 11(2):1907-1916.
YANG Z, SONG J B, TANG W, et al.. Stimuli-responsive nanotheranostics for real-time monitoring drug release by photoacoustic imaging[J].Theranostics, 2019, 9(2):526-536.
ZHANG D, ZHENG A X, LI J, et al.. Smart Cu(Ⅱ)-aptamer complexes based gold nanoplatform for tumor micro-environment triggered programmable intracellular prodrug release, photodynamic treatment and aggregation induced photothermal therapy of hepatocellular carcinoma[J].Theranostics, 2017, 7(1):164-179.
MALDINEY T, DOAN B T, ALLOYEAU D, et al.. Gadolinium-doped persistent nanophosphors as versatile tool for multimodal in vivo imaging[J].Adv.Funct. Mater., 2015, 25(2):331-338.
WU S Q, LI Y, DING W H, et al.. Recent advances of persistent luminescence nanoparticles in bioapplications[J].Nano-Micro Lett., 2020, 12(1):70-1-26.
CHUANG Y J, ZHEN Z P, ZHANG F, et al.. Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging[J].Theranostics, 2014, 4(11):1112-1122.
LIU H H, REN F, ZHOU X G, et al.. Ultra-sensitive detection and inhibition of the metastasis of breast cancer cells to adjacent lymph nodes and distant organs by using long-persistent luminescence nanoparticles[J].Anal. Chem., 2019, 91(23):15064-15072.
LU Y C, YANG C X, YAN X P. Radiopaque tantalum oxide coated persistent luminescent nanoparticles as multimodal probes for in vivo near-infrared luminescence and computed tomography bioimaging[J].Nanoscale, 2015, 7(42):17929-17937.
崔继承, 唐玉国, 撖芃芃, 等.用于肿瘤手术在线诊断的成像光谱仪的研制[J].光学 精密工程, 2013, 21(12):3043-3049.
CUI J C, TANG Y G, HAN P P, et al.. Development of diagnostic imaging spectrometer for tumor on-line operation[J].Opt. Precis. Eng., 2013, 21(12):3043-3049. (in Chinese)
MALDINEY T, BALLET B, BESSODES M, et al.. Mesoporous persistent nanophosphors for in vivo optical bioimaging and drug-delivery[J].Nanoscale, 2014, 6(22):13970-13976.
LIU J H, LÉCUYER T, SEGUIN J, et al.. Imaging and therapeutic applications of persistent luminescence nanomaterials[J].Adv. Drug Deliv. Rev., 2019, 138:193-210.
CHEN L J, YANG C X, YAN X P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy[J].Anal. Chem., 2017, 89(13):6936-6939.
FENG Y, LIU R, ZHANG L C, et al.. Raspberry-like mesoporous Zn1.07Ga2.34Si0.98O6.56:Cr0.01 nanocarriers for enhanced near-infrared afterglow imaging and combined cancer chemotherapy[J].ACS Appl. Mater. Interfaces, 2019, 11(48):44978-44988.
昝明辉, 饶浪, 谢伟, 等.细胞膜伪装的纳米载体用于光热治疗的研究进展[J].中国光学, 2018, 11(3):392-400.
ZAN M H, RAO L, XIE W, et al.. Advances in cell membrane-camouflaged nano-carrier for photothermal therapy[J].Chin. Opt., 2018, 11(3):392-400. (in Chinese)
郑爱仙, 张晓龙, 刘小龙.核酸功能化纳米探针在细胞荧光成像中的应用[J].中国光学, 2018, 11(3):363-376.
ZHENG A X, ZHANG X L, LIU X L. Application in nucleic acid functionalized nanoprobe in cellular fluorescence imaging[J].Chin. Opt., 2018, 11(3):363-376. (in Chinese)
0
Views
272
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution