浏览全部资源
扫码关注微信
1.江苏师范大学 物理与电子工程学院, 江苏省先进激光材料与器件重点实验室, 江苏 徐州 221116
2.江苏锡沂高新材料产业技术研究院, 江苏 徐州 221400
3.江苏大学 机械工程学院, 江苏 镇江 212013
Published:2021-01,
Received:01 September 2020,
Accepted:2020-11-2
移动端阅览
MING-XING YUAN, TIAN-YUAN ZHOU, WEI ZHOU, et al. Research Progress of Solar Directly Pumped Solid-state Laser. [J]. Chinese journal of luminescence, 2021, 42(1): 10-27.
MING-XING YUAN, TIAN-YUAN ZHOU, WEI ZHOU, et al. Research Progress of Solar Directly Pumped Solid-state Laser. [J]. Chinese journal of luminescence, 2021, 42(1): 10-27. DOI: 10.37188/CJL.20200262.
太阳光直接泵浦固体激光器相对于传统二极管泵浦激光器具有能耗低、效率高等优势,在大气传感、深空通信及国防安全等重要领域具有极大的应用潜力,战略意义重大。本文综述了太阳光直接泵浦固体激光器的阳光收集光学系统、增益介质及泵浦系统设计的国内外研究进展,揭示了其与激光输出质量及光转化效率提升的定向关联。提出在太阳光直接泵浦固体激光器发展中,高汇聚效率及高功率的激光输出是核心研究目标,而高品质增益介质是实现上述目标的关键所在。最后,展望了太阳光直接泵浦固体激光器的未来发展趋势。
Solar directly pumped solid-state laser has advantages of energy saving and high efficiency
compared with that of conventional LD pumped laser. It has great application potential in the fields of atmospheric sensing
deep space communication and national defense security
which presents great strategic significance. In this study
the domestic and abroad research progress of sunlight collecting optical system
laser gain medium and pump system design of solar directly pumped solid-state lasers was reviewed. The inter relationship between the improvement of laser quality and optical conversion efficiency was revealed. This study indicated that high convergence efficiency and high-power laser output were the core research objectives in the development of solar directly pumped solid-state laser
and the fabrication of high-quality laser gain medium was the key to realize the above goals. Finally
the development trend of solar directly pumped solid-state laser was prospected.
太阳光直接泵浦固体激光器阳光收集光学系统增益介质泵浦系统
direct solar pumpingsolid-state lasersunlight collecting optical systemgain mediumpump system
SUN Q, LEE T, BERESNA M, et al.. Control of laser induced cumulative stress for efficient processing of fused silica[J].Sci. Rep., 2020, 10(1):3819.
SEILER P, WALLMEROTH K, MANN K. From a rod to a disk[J].Nat. Photonics, 2010, 4(5):285.
CHEN J H, YU J L. Theoretical analysis on a new direct expansion solar assisted ejector-compression heat pump cycle for water heater[J].Sol. Energy, 2017, 142:299-307.
GRAHAM-ROWE D. Solar-powered lasers[J].Nat. Photonics, 2010, 4(2):64-65.
MASUDA T, IYODA M, YASUMATSU Y, et al.. A fully planar solar pumped laser based on a luminescent solar collector[J].Commun. Phys., 2020, 3(1):60-1-6.
HISATOMI T, DOMEN K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts[J].Nat. Catal., 2019, 2(5):387-399.
戚伟佳.太阳光泵浦Nd: YAG激光器的研究[D].长春: 长春理工大学, 2011.
QI W J. Research of Solar-pumped Nd: YAG Laser [D]. Changchun: Changchun University of Science and Technology, 2011. (in Chinese)
何建伟, 赵长明, 杨苏辉, 等.用于太阳光泵浦激光器的菲涅耳透镜设计方法[J].光学技术, 2008, 34(4):552-554.
HE J W, ZHAO C M, YANG S H, et al.. Design of large aperture Fresnel lens for solar-pumped laser[J].Opt. Tech., 2008, 34(4):552-554. (in Chinese)
赵长明, 赵彬, 何建伟.太阳光泵浦固体激光器及其空间应用[J].红外与激光工程, 2006, 35(S3):95-99.
ZHAO C M, ZHAO B, HE J W. Solar pumped solid state lasers and its space applications[J].Infrared Laser Eng., 2006, 35(S3):95-99. (in Chinese)
YOUNG C G. A sun-pumped cw one-watt laser[J].Appl. Opt., 1966, 5(6):993-997.
FALK J, HUFF L, TAYNAI J. Solar-pumped, mode-locked, frequency-doubled Nd:YAG laser[J].IEEE J. Quantum Electron., 1975, 11(9):836-837.
YABE T, OHKUBO T, UCHIDA S, et al.. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle[J].J. Phys.:Conf. Ser., 2008, 112:042072-1-4.
YABE T, OHKUBO T, UCHIDA S, et al.. High-efficiency and economical solar-energy-pumped laser with Fresnel lens and chromium codoped laser medium[J].Appl. Phys. Lett., 2007, 90(26):261120-1-3.
OHKUBO T, YABE T, YOSHIDA K, et al.. Solar-pumped 80 W laser irradiated by a Fresnel lens[J].Opt. Lett., 2009, 34(2):175-177.
LIANG D W, ALMEIDA J. Highly efficient solar-pumped Nd:YAG laser[J].Opt. Express, 2011, 19(27):26399-26405.
张军斌, 黄志云.太阳光泵浦固体激光阈值的理论分析[J].中国光学, 2016, 9(2):241-248.
ZHANG J B, HUANG Z Y. Theoretical analysis on threshold of solar pumped solid state lasers[J].Chin. Opt., 2016, 9(2):241-248. (in Chinese)
赵彬, 赵长明, 何建伟, 等.太阳光抽运固体激光工作物质的研究[J].光学学报, 2007, 27(10):1797-1801.
ZHAO B, ZHAO C M, HE J W, et al.. The study of active medium for solar-pumped solid-state lasers[J].Acta Opt. Sinica, 2007, 27(10):1797-1801. (in Chinese)
赵长明, 何建伟, 杨苏辉.太阳光直接抽运的激光器研究历史与发展趋势[J].中国激光, 2009, 36(7):1671-1678.
ZHAO C M, HE J W, YANG S H. History and development of solar pumped lasers[J].Chin. J. Lasers, 2009, 36(7):1671-1678. (in Chinese)
何建伟, 赵长明, 杨苏辉, 等.太阳光直接抽运的Nd:YAG激光器[J].中国激光, 2009, 36(1):255-256.
HE J W, ZHAO C M, YANG S H, et al.. Solar directly pumped Nd:YAG Laser[J].Chin. J. Lasers, 2009, 36(1):255-256. (in Chinese)
COOKE D. Sun-pumped lasers:revisiting an old problem with nonimaging optics[J].Appl. Opt., 1992, 31(36):7541-7546.
徐鹏, 杨苏辉, 赵长明, 等.太阳光抽运激光器抽运系统优化[J].光学学报, 2013, 33(1):148-152.
XU P, YANG S H, ZHAO C M, et al.. Optimization of pumping system in solar pumped laser[J].Acta Opt. Sinica, 2013, 33(1):148-152. (in Chinese)
LIANG D W, ALMEIDA J. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality[J].Appl. Opt., 2013, 52(21):5123-5132.
LANDO M, KAGAN J, LINYEKIN B, et al.. A solar-pumped Nd:YAG laser in the high collection efficiency regime[J].Opt. Commun., 2003, 222(1-6):371-381.
WEKSLER M, SHWARTZ J. Solar-pumped solid-state lasers[J].IEEE J. Quantum Electon., 1988, 24(6):1222-1228.
KRUPKIN V, KAGAN J A, YOGEV A. Nonimaging optics and solar laser pumping at the Weizmann Institute[C].Proceedings of SPIE 2016, Nonimaging Optics: Maximum-efficiency Light Transfer Ⅱ, San Diego, CA, United States, 1993: 50-60.
COOKE D, GLECKMAN P, KREBS H, et al.. Sunlight brighter than the Sun[J].Nature, 1990, 346(6287):802.
LIANG D W, PEREIRA R. Maximizing TEM00 solar laser power by a light guide assembly-elliptical cavity[J].Opt. Laser Technol., 2009, 41(6):687-692.
LIANG D W, ALMEIDA J. Solar-pumped TEM00 mode Nd:YAG laser[J].Opt. Express, 2013, 21(21):25107-25112.
TIBÚRCIO B D, LIANG D, ALMEIDA J, et al.. Highly efficient side-pumped solar laser with enhanced tracking-error compensation capacity[J].Opt. Commun., 2020, 460:125156.
LIANG D W, ALMEIDA J, GARCIA D, et al.. Simultaneous solar laser emissions from three Nd:YAG rods within a single pump cavity[J].Sol. Energy, 2020, 199:192-197.
LIANG D W, PEREIRA R, BERNARDES P. Enhancing Sun-pumped laser performance by a truncated fused silica elliptical pump cavity[C].Proceedings of 2007 European Conference on Lasers and Electro-optics and the International Quantum Electronics Conference, Munich, Germany, 2007: CA_7.
LIANG D, BERNARDES P, MARTINS R. Sun-pumped Nd: YAG laser with excellent tracking error compensation capacity[C].Proceedings of 2005 Conference on Lasers and Electro-optics Europe, Munich, Germany, 2005: 1567828.
LIANG D W, ALMEIDA J, VISTAS C R, et al.. Solar-pumped TEM00 mode Nd:YAG laser by a heliostat-parabolic mirror system[J].Sol. Energy Mater. Sol. Cells, 2015, 134:305-308.
LIANG D W, ALMEIDA J, VISTAS C R, et al.. High-efficiency solar-pumped TEM00-mode Nd:YAG laser[J].Sol. Energy Mater. Sol. Cells, 2016, 145:397-402.
LIANG D W, VISTAS C R, TIBÚRCIO B D, et al.. Solar-pumped Cr:Nd:YAG ceramic laser with 6.7% slope efficiency[J].Sol. Energy Mater. Sol. Cells, 2018, 185:75-79.
王予, 赵长明, 杨苏辉, 等.太阳光直接抽运1064 nm激光放大器[J].中国激光, 2017, 44(3):0301003-1-6.
WANG Y, ZHAO C M, YANG S H, et al.. Solar directly pumped 1064 nm laser amplifier[J].Chin. J. Lasers, 2017, 44(3):0301003-1-6. (in Chinese)
李金华, 杨苏辉, 赵长明, 等. 31.5 W太阳光抽运Nd:YAG固体激光器[J].光学学报, 2017, 37(11):1114001-1-6.
LI J H, YANG S H, ZHAO C M, et al.. A 31.5 W solar-pumped Nd:YAG solid-state laser[J].Acta Opt. Sinica, 2017, 37(11):1114001-1-6. (in Chinese)
房丹, 谷开慧, 邢淑芝, 等.高聚光效率的太阳光泵浦Nd:YAG激光器[J].大学物理, 2016, 35(11):29-32.
FANG D, GU K H, XING S Z, et al.. Highly efficient concentration system of solar pumped laser[J].Coll. Phys., 2016, 35(11):29-32. (in Chinese)
LI J, PAN Y B, ZENG Y P, et al.. The history, development, and future prospects for laser ceramics:a review[J].Int. J. Refract. Met. Hard Mater., 2013, 39:44-52.
芦宇.阳光泵浦Cr/Nd: YAG陶瓷激光研究[D].哈尔滨: 哈尔滨工业大学, 2013.
LU Y. Research on Solar Pumped Cr/Nd: YAG Ceramic Laser [D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
SUZUKI T, NASU H, HUGHES M, et al.. Quantum efficiency measurements on Nd-doped glasses for solar pumped lasers[J].J. Non-Cryst. Solids, 2010, 356(44-49):2344-2349.
SUZUKI T, KAWAI H, NASU H,et al.. Spectroscopic investigation of Nd3+-doped ZBLAN glass for solar-pumped lasers[J].J. Opt. Soc. Am. B, 2011, 28(8):2001-2006.
SUZUKI T, KAWAI H, NASU H, et al.. Quantum efficiency of Nd3+-doped glasses under sunlight excitation[J].Opt. Mater., 2011, 33(12):1952-1957.
SHIMADA Y, OHARA S. Nd3+-doped Bi2O3-B2O3-TeO2 glass for solar pumped lasers[C].Proceedings of 2012 Conference on Lasers and Electro-optics, San Jose, USA, 2012: CF3A.2.
SHIMADA Y, OHARA S. Nd3+/Yb3+ co-doped Bi2O3-B2O3-TeO2 glass for solar pumped lasers[C].Proceedings of 2013 Conference on Lasers and Electro-optics Pacific Rim(CLEOPR), Kyoto, Japan, 2013: ThA3-2.
BOETTI N G, NEGRO D, LOUSTEAU J, et al.. Spectroscopic investigation of Nd3+ single doped and Eu3+/Nd3+ co-doped phosphate glass for solar pumped lasers[J].J. Non-Cryst. Solids, 2013, 377:100-104.
MIZUNO S, ITO H, HASEGAWA K, et al.. Laser emission from a solar-pumped fiber[J].Opt. Express, 2012, 20(6):5891-5895.
SAIKI T, UCHIDA S, IMASAKI K, et al.. Solar-pumped Nd dope multimode-fiber laser with a D-shaped large clad[J].AIP Conf. Proc., 2004, 702(1):378-389.
IWATA Y, SUZUKI T, OHISHI Y. Optical properties of Er3+-doped glasses for solar-pumped lasers[J].Phys. Status Solidi C, 2012, 9(12):2344-2347.
方再金.透明微晶玻璃以及光纤的制备与光谱转换[D].广州: 华南理工大学, 2016.
FANG Z J. Fabrication and Spectral Conversion of Transparent Glass Ceramics and Glass Ceramic Fibers [D]. Guangzhou: South China University of Technology, 2016. (in Chinese)
GEUSIC J E, MARCOS H M, VAN UITERT L G. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J].Appl. Phys. Lett., 1964, 4(10):182-184.
LIANG D W, VISTAS C R, ALMEIDA J, et al.. Side-pumped continuous-wave Nd:YAG solar laser with 5.4% slope efficiency[J].Sol. Energy Mater. Sol. Cells, 2019, 192:147-153.
ALMEIDA J, LIANG D W. Design of TEM00 mode side-pumped Nd:YAG solar laser[J].Opt. Commun., 2014, 333:219-225.
LIANG D, ALMEIDA J, VISTAS C R. 25 W/m2 collection efficiency solar-pumped Nd:YAG laser by a heliostat-parabolic mirror system[J].Appl. Opt., 2016, 55(27):7712-7717.
DINH T H, OHKUBO T, YABE T, et al.. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod[J].Opt. Lett., 2012, 37(13):2670-2672.
沈钟平, 张华.影响地面太阳辐射及其谱分布的因子分析[J].太阳能学报, 2009, 30(10):1209-1215.
SHEN Z P, ZHANG H. Analysis on the factors affecting surface solar radiation and its spectral distribution[J].Acta Energ. Sol. Sinica, 2009, 30(10):1209-1215. (in Chinese)
张立伟, 赵长明, 杨苏辉, 等. Cr, Nd:YAG陶瓷作为太阳光抽运材料的可行性研究[J].激光技术, 2011, 35(2):193-195.
ZHANG L W, ZHAO C M, YANG S H, et al.. Study on the feasibility of Cr, Nd:YAG ceramic used for solar pumped lasers[J].Laser Technol., 2011, 35(2):193-195. (in Chinese)
邓俊勇.可见波段到近红外的光谱调制与能量传递[D].广州: 华南理工大学, 2013.
DENG J Y. Visible to Near-infrared Spectral Modification and Energy Transfer [D]. Guangzhou: South China University of Technology, 2013. (in Chinese)
KOECHNER W, WILSON M K. Solid-state laser engineering:second completely revised and updated edition[J].Appl. Opt., 1989, 28(48):509-530.
VISTAS C R, LIANG D W, GARCIA D, et al.. Ce:Nd:YAG continuous-wave solar-pumped laser[J].Optik, 2020, 207:163795.
MAÎTRE A, SALLÉ C, BOULESTEIX R, et al.. Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics[J].J. Am. Ceram. Soc., 2008, 91(2):406-413.
MESSING G L, STEVENSON A J. Toward pore-free ceramics[J].Science, 2008, 322(5900):383-384.
IKESUE A, AUNG Y L. Ceramic laser materials[J].Nat. Photonics, 2008, 5(12):721-727.
王菲, 王晓华, 房丹, 等.太阳光泵浦固体激光器的研究与应用[J].激光与红外, 2011, 41(7):739-741.
WANG F, WANG X H, FANG D, et al.. Research and application of solar pumped solid-state lasers[J].Laser Infrared, 2011, 41(7):739-741. (in Chinese)
SHEN Z C, LU Y, LU J Y, et al.. Development of solar-pumped solid-state lasers[C].Proceedings of 2011 Academic International Symposium on Optoelectronics and Microelectronics Technology, Harbin, China, 2011: 8-11
芦宇, 申作春.菲涅尔透镜聚焦太阳光泵浦Cr/Nd:YAG陶瓷激光器[J].光学精密工程, 2016, 24(10s):294-299.
LU Y, SHEN Z C. Solar-pumped Cr/Nd:YAG ceramic laser focused by Fresnel lens[J].Opt. Precision Eng., 2016, 24(10s):294-299(in Chinese)
SAIKI T, UCHIDA S, IMASAKI K, et al.. Oscillation property of disk-type Nd/Cr: YAG ceramic lasers with quasi-solar pumping[C].Proceedings of 2005 Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Baltimore, Maryland, 2005: CTuQ1.
SAIKI T, MOTOKOSHI S, IMASAKI K, et al.. Oscillation property of rod-type Nd/Cr: YAG ceramic lasers with quasi-solar pumping[C].Proceedings of 2007 Conference on Lasers and Electro-optics, Baltimore, USA, 2007: CThT3.
YAGI H, YANAGITANI T, UEDA K I. Nd3+:Y3Al5O12 laser ceramics:flashlamp pumped laser operation with a UV cut filter[J].J. Alloys Compd., 2006, 421(1-2):195-199.
YAGI H, YANAGITANI T, YOSHIDA H, et al.. The optical properties and laser characteristics of Cr3+ and Nd3+ co-doped Y3Al5O12 ceramics[J].Opt. Laser Technol., 2007, 39(6):1295-1300.
SAIKI T, MOTOKOSHI S, IMASAKI K, et al.. Laser pulses amplified by Nd/Cr:YAG ceramic amplifier using lamp and solar light sources[J].Opt. Commun., 2009, 282(7):1358-1362.
SAIKI T, FUJIWARA N, MATSUOKA N, et al.. Amplification properties of KW Nd/Cr:YAG ceramic multi-stage active-mirror laser using white-light pump source at high temperatures[J].Opt. Commun., 2017, 387:316-321.
ALMEIDA J, LIANG D, GUILLOT E. Improvement in solar-pumped Nd:YAG laser beam brightness[J].Opt. Laser Technol., 2012, 44(7):2115-2119.
LI J, WU Y S, PAN Y B, et al.. Solid-state-reactive fabrication of Cr, Nd:YAG transparent ceramics:the influence of raw material[J].J. Ceram. Soc. Japan, 2008, 116(1352):572-577.
李江, 吴玉松, 潘裕柏, 等. Cr4+, Nd3+:YAG自调Q激光透明陶瓷的光谱性质[J].发光学报, 2007, 28(2):219-224.
LI J, WU Y S, PAN Y B, et al.. Spectroscopic properties of Cr4+, Nd3+:YAG transparent ceramics for self-Q-switched laser[J].Chin. J. Lumin., 2007, 28(2):219-224. (in Chinese)
ZHANG P D, CHAI B Y, JIANG B X, et al.. High transparency Cr, Nd:LuAG ceramics prepared with MgO additive[J].J. Eur. Ceram. Soc., 2017, 37(6):2459-2463.
ZHANG P D, JIANG B X, FAN J T, et al.. Effects of annealing on Cr-sensitized Nd:LuAG laser ceramics[J].Opt. Mater. Express, 2015, 5(10):2209-2216.
LU Y, SHEN Z C, ZHOU Y Z. Spectral distribution of Xe lamp focused by Fresnel lens on focal plane and design of Fresnel lens for solar-pumped Cr/Nd:YAG ceramic[J].J. Opt. Technol., 2013, 80(8):474-479.
郝嘉胤, 赵长明, 徐鹏, 等.太阳光直接抽运激光器系统及计算机模拟优化[J].激光技术, 2013, 37(4):437-440.
HAO J Y, ZHAO C M, XU P, et al.. Laser systems pumped by sunlight directly and computer simulation optimization[J]. Laser Technol., 2013, 37(4):437-440. (in Chinese)
王晴晴, 石云, 冯亚刚, 等.太阳光泵浦Cr, Nd:YAG透明陶瓷的光谱特性和激光参数[J].发光学报, 2019, 40(11):1365-1372.
WANG Q Q, SHI Y, FENG Y G, et al.. Spectral characteristics and laser parameters of solar pumped Cr, Nd:YAG transparent ceramics[J].Chin. J. Lumin., 2019, 40(11):1365-1372. (in Chinese)
杨丽颖, 李嘉强, 张金玉, 等.半导体激光泵浦复合晶体固体激光器的热效应[J].发光学报, 2017, 38(6):742-746.
YANG L Y, LI J Q, ZHANG J Y, et al.. Thermal effect of composite crystals solid state lasers pumped by diode laser[J].Chin. J. Lumin., 2017, 38(6):742-746. (in Chinese)
PAVEL N, TSUNEKANE M, TAIRA T. Composite, all-ceramics, high-peak power Nd:YAG/Cr4+:YAG monolithic micro-laser with multiple-beam output for engine ignition[J].Opt. Express, 2011, 19(10):9378-9384.
郭俊宏, 段延敏, 张静, 等. Nd:YAG/Cr4+:YAG/YAG键合晶体调Q激光输出特性研究[J].光子学报, 2018, 47(2):0214002-1-6.
GUO J H, DUAN Y M, ZHANG J, et al.. Investigation on passively Q-switch output characteristics of Nd:YAG/Cr4+:YAG/YAG composite crystal laser[J].Acta Photon. Sinica, 2018, 47(2):0214002-1-6. (in Chinese)
GUAN Z, ZHAO C, LI J, et al.. 32.1 W/m2 continuous wave solar-pumped laser with a bonding Nd:YAG/YAG rod and a Fresnel lens[J].Opt. Laser Technol., 2018, 107:158-161.
杨昊霖, 陈玥, 贾富强, 等.陶瓷激光器研究进展[J].激光与光电子学进展, 2020, 57(7):142-162.
YANG H L, CHEN Y, JIA F Q, et al.. Research progress in ceramic lasers[J].Laser Optoelectron. Prog., 2020, 57(7):142-162. (in Chinese)
BEZOTOSNYI V V, BALASHOV V V, BULAEV V D, et al.. Lasing characteristic of new Russian laser ceramics[J].Quantum Electron., 2018, 48(9):802-806.
IKESUE A, AUNG Y L. Synthesis and performance of advanced ceramic lasers[J].J. Am. Ceram. Soc., 2006, 89(6):1936-1944.
MEHELLOU S, LIANG D W, ALMEIDA J, et al.. Stable solar-pumped TEM00-mode 1064 nm laser emission by a monolithic fused silica twisted light guide[J].Sol. Energy, 2017, 155:1059-1071.
ALMEIDA J, LIANG D. Design of a high brightness solar-pumped laser by light-guides[J].Opt. Commun., 2012, 285(24):5327-5333.
RAPAPORT A, ZHAO S Z, XIAO G H, et al.. Temperature dependence of the 1.06μm stimulated emission cross section of neodymium in YAG and in GSGG[J].Appl. Opt., 2002, 41(33):7052-7057.
DONG J, RAPAPORT A, BASS M, et al.. Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals[J].Phys. Stat. Sol. A, 2005, 202(13):2565-2573.
SAFARI E, KACHANOV A. Estimation of thermal lensing effect in the high-power end-pumped direct-cut crystal lasers[J].Opt. Laser Technol., 2006, 38(7):534-539.
ARASHI H, OKA Y, ISHIGAME M. A solar-pumped laser on the Space Station[J].Space Sol. Power Rev., 1985, 5(2):131-133.
LIANG D W, FRASER MONTEIRO L, RIBAU TEIXEIRA M, et al.. Fiber-optic solar energy transmission and concentration[J].Sol. Energy Mater. Sol. Cells, 1998, 54(1-4):323-331.
LIANG D, ALMEIDA J, GUILLOT E. Side-pumped continuous-wave Cr:Nd:YAG ceramic solar laser[J].Appl. Phys. B, 2013, 111(2):305-311.
ARASHI H, OKA Y, SASAHARA N, et al.. A solar-pumped CW 18 W Nd:YAG laser[J].Jpn. J. Appl. Phys., 1984, 23(8R):1051-1053.
VISTAS C R, LIANG D W, ALMEIDA J. Solar-pumped TEM00 mode laser simple design with a grooved Nd:YAG rod[J].Sol. Energy, 2015, 122:1325-1333.
ENDO M, BISSON J F. Positive gain observation in a Nd-doped active fiber pumped by low-concentrated solar-like xenon lamp[J].Jpn. J. Appl. Phys., 2012, 51(2R):022701.
ENDO M, BISSON J F, MASUDA T. Monte Carlo simulation of a transversely excited solar-pumped fiber laser[J].Jpn. J. Appl. Phys., 2019, 58(11):112006.
MASUDA T, IYODA M, YASUMATSU Y, et al.. Low-concentrated solar-pumped laser via transverse excitation fiber-laser geometry[J].Opt. Lett., 2017, 42(17):3427-3430.
ALMEIDA J, LIANG D, GUILLOT E, et al.. A 40 W CW Nd:YAG solar laser pumped through a heliostat:a parabolic mirror system[J].Laser Phys., 2013, 23(6):065801.
ALMEIDA J, LIANG D, VISTAS C R, et al.. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system[J].Appl. Opt., 2015, 54(8):1970-1977.
LIANG D W, ALMEIDA J, VISTAS C R, et al.. Solar-pumped Nd:YAG laser with 31.5 W/m2 multimode and 7.9 W/m2 TEM00-mode collection efficiencies[J].Sol. Energy Mater. Sol. Cells, 2017, 159:435-439.
0
Views
604
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution