浏览全部资源
扫码关注微信
昆明理工大学 材料科学与工程学院, 云南 昆明 650093
Published:2020-12,
Received:24 August 2020,
Accepted:2020-9-14
移动端阅览
CHAO WANG, RONG-BIN WANG, HAO ZHANG, et al. Effect of Defect Structure on Thermal Stability of Fluorescent Materials for LED Applications. [J]. Chinese journal of luminescence, 2020, 41(12): 1554-1566.
CHAO WANG, RONG-BIN WANG, HAO ZHANG, et al. Effect of Defect Structure on Thermal Stability of Fluorescent Materials for LED Applications. [J]. Chinese journal of luminescence, 2020, 41(12): 1554-1566. DOI: 10.37188/CJL.20200254.
稀土或过渡金属离子掺杂荧光材料因其环保、易于制备、高效率、低成本、长发光寿命、全光谱、高亮度等性能在多重防伪、光学信息存储、温度传感等众多领域具有广泛的应用,特别是在LED照明领域。然而,荧光材料热稳定性差是阻碍其快速发展的核心问题。近年来,关于在热扰动作用下,缺陷态对载流子的俘获及释放过程,作为抑制LED用荧光材料热猝灭效应的有效途径被广泛研究。本文主要概述了LED用荧光材料中缺陷态对其热稳定性影响的研究现状,以及缺陷态作为陷阱中心对载流子的俘获、释放及其抑制LED用荧光材料热猝灭效应的机理,并对当前研究中存在的问题进行了总结和展望。
Rare earth or transition metal ions doped into fluorescent materials have a wide range of applications
such as multiple anti-counterfeiting
optical information storage
temperature sensing and other fields because of its environmental protection
easy preparation
high efficiency
low cost
long luminous life
full spectrum
high brightness
especially in the LED lighting field. However
the poor thermal stability of fluorescent materials is still a significantly challenge
which limits its rapidly applied development
particularly in the high temperature environments. Recently
under the excited of thermal disturbance
the capture and release processes of carriers from defect structure have been widely studied as an effective way to suppress the thermal quenching effect of fluorescent materials. This paper mainly focused on the summaries on the effect of the defect structures on the thermal stabilities of the fluorescent material. Besides
the influence of the defects structures
acting as the trapping centers
on the capturing and releasing processes of carriers
and the suppressing process of thermal quenching phenomenon are also summarized. Finally
the above critical issues in the current research are summarized and prospected.
LED用荧光材料缺陷态热稳定性
fluorescent materials for LED applicationsdefect structurethermal stability
AZEVEDO I L, MORGAN M G, MORGAN F. The transition to solid-state lighting[J].Proc. IEEE, 2009, 97(3):481-510.
TIAN Y C. Development of phosphors with high thermal stability and efficiency for phosphor-converted LEDs[J].J. Solid State Light., 2014, 1(1):11.
HERMUS M, PHAN P C, DUKE A C, et al.. Tunable optical properties and increased thermal quenching in the blue-emitting phosphor series:Ba2(Y1-xLux)5B5O17:Ce3+ (x=0-1)[J].Chem. Mater., 2017, 29(12):5267-5275.
ZHU Y L, LIANG Y J, LIU S Q, et al.. Narrow-band green-emitting Sr 2MgAl22O36:Mn2+ phosphors with superior thermal stability and wide color gamut for backlighting display applications[J].Adv. Opt. Mater., 2019, 7(6):1801419-1-9.
张斌. GaN基LED材料特性研究及芯片结构设计[D].武汉: 华中科技大学, 2008.
ZHANG B. Research of Material Characteristic of GAN Based LED and Design of Chip Structure [D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese)
ZHANG L Q, YANG X L, JIANG Q, et al.. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes[J].Nat. Commun., 2017, 8:15640-1-8.
VISHWAKARMA P K, SHAHI P K, RAI S B, et al.. Low temperature optical sensor based on non-thermally coupled level of Ho3+ and defect level of Zn2+ in Yb3+:Y2TI2O7 phosphor[J].J. Phys. Chem. Solids, 2020, 142:109445.
BACK M, UEDA J, XU J, et al.. Effective ratiometric luminescent thermal sensor by Cr3+-doped mullite Bi2Al4O9 with robust and reliable performances[J].Adv. Opt. Mater., 2020, 8(11):2000124.
ZHU C C, LONG Z W, WANG Q, et al.. Insights into anti-thermal quenching of photoluminescence from SrCaGa4O8 based on defect state and application in temperature sensing[J].J. Lumin., 2019, 208:284-289.
FANG S Q, LANG T C, HAN T, et al.. Zero-thermal-quenching of Mn4+ far-red-emitting in LaAlO3 perovskite phosphor via energy compensation of electrons' traps[J].Chem. Eng. J., 2020, 389:124297.
WANG B, WANG H W, HUANG J H, et al.. Trap distribution and photo-stimulated luminescence in LaSrAl3O7:Eu2+ long-lasting phosphors for optical data storage[J].J. Am. Ceram. Soc., 2020, 103(1):315-323.
刘志超. LED用荧光材料在缺陷态辅助下的热稳定性机理研究[D].昆明: 昆明理工大学, 2019.
LIU Z C. Study on The Thermal Stability Mechanism of Fluorescent Materials for Led with The Assist of Defect State [D]. Kunming: Kunming University of Science and Technology, 2019. (in Chinese)
LIU D, JIN Y H, LV Y, et al.. A single-phase full-color emitting phosphor Na3Sc2(PO4)3:Eu2+/Tb3+/Mn2+ with near-zero thermal quenching and high quantum yield for near-UV converted warm w-LEDs[J].J. Am. Ceram. Soc., 2018, 101(12):5627-5639.
SHI R, NING L X, WANG Z Q, et al.. Zero-thermal quenching of Mn2+ red luminescence via efficient energy transfer from Eu2+ in BaMgP2O7[J].Adv. Opt. Mater., 2019, 7(23):1901187.
QIAO J W, ZHAO J, LIU Q L. Recent advances in solid-state LED phosphors with thermally stable luminescence[J].J. Rare Earths, 2019, 37(6):565-572.
DUKE A C, HARIYANI S, BRGOCH J. Ba3Y2B6O15:Ce3+—a high symmetry, narrow-emitting blue phosphor for wide-gamut white lighting[J].Chem. Mater., 2018, 30(8):2668-2675.
XIA Z G, MOLOKEEV M S, BIN W B, et al.. Crystal structure and photoluminescence evolution of La5(Si2+xB1-x)(O13-xNx):Ce3+ solid solution phosphors[J].J. Phys. Chem. C, 2015, 119(17):9488-9495.
DENAULT K A, BRGOCH J, KLO S F, et al.. Average and local structure, Debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts[J].ACS Appl. Mater. Interfaces, 2015, 7(13):7264-7272.
XIA Z G, LIU Q L. Progress in discovery and structural design of color conversion phosphors for LEDs[J].Prog. Mater. Sci., 2016, 84:59-117.
WEI Y, CAO L, LV L M, et al.. Highly efficient blue emission and superior thermal stability of BaAl12O19:Eu2+ phosphors based on highly symmetric crystal structure[J].Chem. Mater., 2018, 30(7):2389-2399.
FAN X T, CHEN W B, XIN S Y, et al.. Achieving long-term zero-thermal-quenching with the assistance of carriers from deep traps[J].J. Mater. Chem. C, 2018, 6(12):2978-2982.
KANG F W, PENG M Y, ZHANG Q Y, et al.. Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4:Bi3+ phosphor for UV-converted white LEDs[J].Chem.-Eur. J., 2014, 20(36):11522-11530.
LIU Z C, ZHAO L, CHEN W B, et al.. Effects of the deep traps on the thermal-stability property of CaAl2O4:Eu2+ phosphor[J].J. Am. Ceram. Soc., 2018, 101(8):3480-3488.
SHAO Q Y, LIN H Y, DONG Y, et al.. Thermostability and photostability of Sr3SiO5:Eu2+ phosphors for white LED applications[J].J. Solid State Chem., 2015, 225:72-77.
KIM Y H, ARUNKUMAR P, KIM B Y, et al.. A zero-thermal-quenching phosphor[J].Nat. Mater., 2017, 16(5):543-550.
LIN C C, TSAI Y T, JOHNSTON H E, et al.. Enhanced photoluminescence emission and thermal stability from introduced cation disorder in phosphors[J].J. Am. Chem. Soc., 2017, 139(34):11766-11770.
QIAO J W, NING L X, MOLOKEEV M S,et al.. Eu2+ site preferences in the mixed cation K2BaCa(PO4)2 and thermally stable luminescence[J].J. Am. Chem. Soc., 2018, 140(30):9730-9736.
LI H M, CAI J Z, PANG R, et al.. A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa2O4:Bi3+ [J].J. Mater. Chem. C, 2019, 7(42):13088-13096.
WEI Q, DING J Y, WANG Y H. A novel tunable extra-broad yellow-emitting nitride phosphor with zero-thermal-quenching property[J].Chem. Eng. J., 2020, 386:124004.
ZHANG B B, CHEN J K, MA J P, et al.. Antithermal quenching of luminescence in zero-dimensional hybrid metal halide solids[J].J. Phys. Chem. Lett., 2020, 11(8):2902-2909.
MONDAL N, DE A, SAMANTA A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals[J].ACS Energy Lett., 2019, 4(1):32-39.
MA J P, CHEN Y M, ZHANG L M, et al.. Insights into the local structure of dopants, doping efficiency, and luminescence properties of lanthanide-doped CsPbCl3 perovskite nanocrystals[J].J. Mater. Chem. C, 2019, 7(10):3037-3048.
ZHONG J Y, ZHUO Y, HARIYANI S, et al.. Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3:Ce3+ [J].Chem. Mater., 2020, 32(2):882-888.
YU X, WANG S B, ZHU Y C, et al.. High-temperature long persistent and photo-stimulated luminescence in Tb3+ doped gallate phosphor[J].J. Alloys Compd., 2017, 701:774-779.
LIN H H, BAI G X, YU T, et al.. Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12:Cr3+ persistent phosphor[J].Adv. Opt. Mater., 2017, 5(18):1700227.
LINS P, XIONG C W, MA D C, et al.. Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal[J].J. Mater. Chem. C, 2018, 37(6):10067-10072.
WANG Z Z, SONG Z, NING L X, et al.. Enhanced yellow persistent luminescence in Sr3SiO5:Eu2+ through Ge incorporation[J].Inorg. Chem., 2019, 58(13):8694-8701.
WANG Z Z, SONG Z, NING L X, et al.. Sunlight-activated yellow long persistent luminescence from Nb-doped Sr3SiO5:Eu2+ for warm-color mark applications[J].J. Mater. Chem. C, 2020, 8(3):1143-1150.
QU B Y, ZHANG B, WANG L, et al.. Mechanistic study of the persistent luminescence of CaAl2O4:Eu, Nd[J].Chem. Mater., 2015, 27(6):2195-2202.
SUN W Z, PANG R, LI H M, et al.. Investigation of a novel color tunable long afterglow phosphor KGaGeO4:Bi3+:luminescence properties and mechanism[J].J. Mater. Chem. C, 2017, 5(6):1346-1355.
KATAYAMA Y, VIANA B, GOURIER D, et al.. Photostimulation induced persistent luminescence in Y3Al2Ga3O12:Cr3+ [J].Opt. Mater. Express, 2016, 6(4):1405-1413.
SONG Z, WANG Z Z, HE L Z, et al.. After-glow, luminescent thermal quenching, and energy band structure of Ce-doped yttrium aluminum-gallium garnets[J].J. Lumin., 2017, 192:1278-1287.
XU J, JU Z H, YANG X J, et al.. Considerable improvement of Na2CaSn2Ge3O12:Eu3+ reddish orange long-persistent phosphorescence with co-doping of Dy3+ [J].Dyes Pigm., 2019, 162:951-958.
UEDA J, HASHIMOTO A, TANABE S. Orange persistent luminescence and photodarkening related to paramagnetic defects of nondoped CaO-Ga2O3GeO2 glass[J].J. Phys. Chem. C, 2019, 123(49):29946-29953.
HU R, ZHANG Y, ZHAO Y, et al.. UV-Vis-NIR broadband-photostimulated Luminescence of LiTaO3:Bi3+ long-persistent phosphor and the optical storage properties[J].Chem. Eng. J., 2020, 392:124807.
WANG F X, GUO J Z, WANG S X, et al.. Yellow persistent luminescence and electronic structure of Ca-α-Sialon:Eu2+[J].J. Alloys Compd., 2020, 821:153482.
ZHANG S Y, SONG Z, WANG S X, et al.. Red persistent and photostimulable phosphor SrLiAl3N4:Eu2+ [J].J. Mater. Chem. C, 2020, 8(14):4956-4964.
ZHOU X F, GENG W Y, LI J Y, et al.. An ultraviolet-visible and near-infrared-responded broadband NIR phosphor and its NIR spectroscopy application[J].Adv. Opt. Mater., 2020, 8(8):1902003.
0
Views
450
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution