浏览全部资源
扫码关注微信
东北大学 材料科学与工程学院, 辽宁 沈阳 110819
Published:2020-12,
Received:5 August 2020,
Accepted:31 August 2020
扫 描 看 全 文
Bing-guo XUE, Qing-yang LYU, Ting-ting Wang, et al. Research Progress of Gd3Al5O12-based Luminescent Materials. [J]. Chinese Journal of Luminescence 41(12):1538-1553(2020)
Bing-guo XUE, Qing-yang LYU, Ting-ting Wang, et al. Research Progress of Gd3Al5O12-based Luminescent Materials. [J]. Chinese Journal of Luminescence 41(12):1538-1553(2020) DOI: 10.37188/CJL.20200237.
钆铝石榴石(Gd
3
Al
5
O
12
,GdAG)是性能优异的发光基质材料,但其在高温煅烧时易发生分解,导致得到纯相GdAG基发光材料比较困难。近年来,研究证实通过小半径
Ln
3+
(
Ln
=Y,Lu,Tb)取代部分Gd
3+
,或通过离子半径更大的
M
3+
来取代Al的位置扩大十二面体间隙,可以稳定GdAG晶格,得到纯相GdAG基发光材料。本文综述了GdAG基发光材料在晶格稳定化、下转换发光、上转换发光等方面的研究进展,并探讨了GdAG基单晶、薄膜和陶瓷的制备、性能及其在射线探测和医学成像等领域的应用前景。
Gadolinium aluminum garnet(Gd
3
Al
5
O
12
GdAG) is an excellent luminescent host material. But GdAG is easy to decompose during high temperature calcination
which makes it difficult to obtain a pure phase GdAG-based luminescent material. In recent years
research has confirmed that substituting the smaller radius
Ln
3+
(
Ln
=Y
Lu
Tb) for part of Gd
3+
or replacing the Al
3+
with the larger radius
M
3+
to expand the dodecahedral gap
can stabilize the GdAG lattice and thus obtain a pure phase GdAG-based luminescent material. This article reviews the research progress of GdAG-based luminescent materials including the lattice stabilization
down-conversion luminescence
and up-conversion luminescence
and also discusses the preparation and performances of GdAG-based single crystals
thin films and ceramics
and their applications in radiological detection and medical imaging.
钆铝石榴石荧光粉闪烁体单晶陶瓷
gadolinium aluminum garnetphosphorscintillatorsingle crystalceramic
陈积阳, 施鹰, 冯涛, 等.闪烁陶瓷及其在医学X-CT上的应用[J].硅酸盐学报, 2004, 32(7):868-872.
CHEN J Y, SHI Y, FENG T, et al.. Scintillation ceramics and their application on medical X-CT[J].J. Chin. Ceram. Soc., 2004, 32(7):868-872. (in Chinese)
FENG X Q. Anti-site defects in YAG and LuAG crystals[J].J. Inorg. Mater., 2010, 25(8):785-794.
GEUSIC J E, MARCOS H M, VAN UITERT L G. Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets[J].Appl. Phys. Lett., 1964, 4(10):182-184.
汪超, 任国浩.石榴石系列闪烁晶体的研究进展[J].硅酸盐学报, 2015, 43(7):882-891.
WANG C, REN G H. Recent studies on garnet scintillation crystals[J].J. Chin. Ceram. Soc., 2015, 43(7):882-891. (in Chinese)
李会利, 刘学建, 黄莉萍.固相反应法制备Ce:LuAG透明陶瓷[J].无机材料学报, 2006, 21(5):1161-1166.
LI H L, LIU X J, HUANG L P. Fabrication of transparent Ce:LuAG ceramics by a solid-state reaction method[J].J. Inorg. Mater., 2006, 21(5):1161-1166. (in Chinese)
BLASSE G, BRIL A. Investigation of some Ce3+-activated phosphors[J].J. Chem. Phys., 1967, 47(12):5139-5145.
BOUKERIKA A, GUERBOUS L, CHELEF H, et al.. Preparation and characterization of bright high quality YAG:Eu3+ thin films grown by sol-gel dip-coating technique[J].Thin Solid Films, 2019, 683:74-81.
LI J G, LI X D, SUN X D, et al.. Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping[J].J. Phys. Chem. C, 2008, 112(31):11707-11716.
LI J G, LI X D, SUN X D, et al.. Uniform colloidal spheres for (Y1-xGdx)2O3 (x=0-1):formation mechanism, compositional impacts, and physicochemical properties of the oxides[J].Chem. Mat., 2008, 20(6):2274-2281.
LI Y H, HONG G Y. Synthesis and luminescence properties of nanocrystalline Gd2O3:Eu3+ by combustion process[J].J. Lumin., 2007, 124(2):297-301.
DENG Y, FOWLKES J D, FITZ-GERALD J M, et al.. Combinatorial thin film synthesis of Gd-doped Y3Al5O12 ultraviolet emitting materials[J].Appl. Phys. A, 2005, 80(4):787-789.
DENG Y, FOWLKES J D, RACK P D, et al.. Thin film RF magnetron sputtering of gadolinium-doped yttrium aluminum garnet ultraviolet emitting materials[J].Opt. Mater., 2006, 29(2-3):183-191.
NISHIURA S, TANABE S, FUJIOKA K, et al.. Preparation of transparent Ce3+:GdYAG ceramics phosphors for white LED[J].IOP Conf. Ser.:Mater. Sci. Eng., 2011, 18:102005.
KUČERA M, NIKL M, HANUŠ M, et al.. Gd3+ to Ce3+ energy transfer in multi-component GdLuAG and GdYAG garnet scintillators[J].Phys. Status Solidi R. Res. Lett., 2013, 7(8):571-574.
MIZUNO M, YAMADA T, NOGUCHI T. Phase diagrams of the systems Al2O3-Eu2O3 and Al2O3-Gd2O3 at high temperatures[J].Yogyo-Kyokai-Shi, 1977, 85(11):543-548.
MIZUNO M, YAMADA T. Phase diagram of the system Ga2O3-Sm2O3 at high temperatures[J].J. Ceram. Soc. Jpn., 1989, 97(1131):1334-1338.
MIZUNO M, YAMADA T, NOGUCHI T. Phase diagram of the system Al2O3-Dy2O3 at high temperatures[J].J. Ceram. Soc. Jpn., 1979, 86(8):360-364.
SHISHIDO T, OKAMURA K, YAJIMA S. Gd3Al5O12 phase obtained by crystallization of amorphous Gd2O3·5/3Al2O3[J].J. Am. Ceram. Soc., 1978, 61(7-8):373-375.
LI J K, LI J G, ZHANG Z J, et al.. Gadolinium aluminate garnet (Gd3Al5O12):crystal structure stabilization via lutetium doping and properties of the (Gd1-xLux)3Al5O12 solid solutions (x=0-0.5)[J].J. Am. Ceram. Soc., 2012, 95(3):931-936.
CHAUDHURY S, PARIDA S C, PILLAI K, et al.. High-temperature X-ray diffraction and specific heat studies on GdAlO3, Gd3Al5O12 and Gd4Al2O9[J].J. Solid State Chem., 2007, 180(8):2393-2399.
XIA Z G, MEIJERINK A. Ce 3+-doped garnet phosphors:composition modification, luminescence properties and applications[J].Chem. Soc. Rev., 2017, 46(1):275-299.
WANG W Z, LI J K, TENG X, et al.. Luminescence properties of Y3+ stabilized Gd3Al5O12:Tb3+/Ce3+ phosphors with yellow light-emitting for warm white LEDs[J].J. Lumin., 2018, 202:176-185.
NAZAROV M, NOH D Y, SOHN J, et al.. Influence of additional Eu3+ coactivator on the luminescence properties of Tb3Al5O12:Ce3+, Eu3+[J].Opt. Mater., 2008, 30(9):1387-1392.
ZORENKO Y, GORBENKO V, VOZNYAK T, et al.. Luminescence and Tb3+-Ce3+-Eu3+ ion energy transfer in single-crystalline films of Tb3Al5O12:Ce, Eu garnet[J].J. Lumin., 2008, 128(4):652-660.
LI J K, LI J G, WU X L, et al.. Crystal structure stabilization of gadolinium aluminum garnet (Gd3Al5O12) and photoluminescence properties[J].Key Eng. Mater., 2013, 544:245-251.
CHIANG C C, TSAI M S, HON M H. Preparation of cerium-activated GAG phosphor powders influence of co-doping on crystallinity and luminescent properties[J].J. Electrochem. Soc., 2007, 154(10):J326-J329.
苑航, 陈宇潇, 王英杰, 等.无机闪烁体钆镓铝石榴石(GAGG)的性能研究及应用[J].现代工业经济和信息化, 2018, 8(11):24-26.
YUAN H, CHEN Y X, WANG Y J, et al.. Inorganic scintillator gadolinium gallium aluminum garnet(GAGG)'s performance research and application[J].Mod. Ind. Econ. Inform., 2018, 8(11):24-26. (in Chinese)
OGIEGłO J M, KATELNIKOVAS A, ZYCH A, et al.. Luminescence and luminescence quenching in Gd3(Ga, Al)5O12 scintillators doped with Ce3+[J].J. Phys. Chem. A, 2013, 117(12):2479-2484.
CAO Q, HE L N, FENG X J, et al.. Effect of annealing on the structural and optical properties of β-Ga2O3 films prepared on gadolinium gallium garnet (110) by MOCVD[J].Ceram. Int., 2018, 44(1):830-835.
PIAO R Q, XU Q, ZHANG Z B, et al.. A study on ratiometric thermometry based on upconversion emissions of erbium ions in gadolinium gallium garnet single-crystal[J].J. Lumin., 2018, 204:116-121.
RONDA C. Luminescent materials with quantum efficiency larger than 1, status and prospects[J].J. Lumin., 2002, 100(1-4):301-305.
LI J G, SAKKA Y. Recent progress in advanced optical materials based on gadolinium aluminate garnet (Gd3Al5O12)[J].Sci. Technol. Adv. Mater., 2015, 16(1):014902-1-18.
DORENBOS P. The 5d level positions of the trivalent lanthanides in inorganic compounds[J].J. Lumin., 2000, 91(3-4):155-176.
WU J L, GUNDIAH G, CHEETHAM A K. Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting[J].Chem. Phys. Lett., 2007, 441(4-6):250-254.
DOTSENKO V P, BEREZOVSKAYA I V, VOLOSHINOVSKII A S, et al.. Luminescence properties and electronic structure of Ce3+-doped gadolinium aluminum garnet[J].Mater. Res. Bull., 2015, 64:151-155.
BACHMANN V M. Studies on Luminescence and Quenching Mechanisms in Phosphors for Light Emitting Diodes [D]. Netherlands: Utrecht University, 2007.
JOSHI C, YADAV P, MOHARIL S V. Improved white light emitting diode characteristics by coating GdAG:Ce phosphor[J].Trans. Electr. Electron. Mater, 2014, 15(2):69-72.
LI J K, LI J G, LIU S H, et al.. The development of Ce3+-activated (Gd, Lu)3Al5O12 garnet solid solutions as efficient yellow-emitting phosphors[J].Sci. Technol. Adv. Mater., 2013, 14(5):054201-1-9.
JAIN A, KOYANI R, MUñOZ C, et al.. Blue light triggered generation of reactive oxygen species from silica coated Gd3Al5O12:Ce3+ nanoparticles loaded with rose Bengal[J].Data Brief, 2018, 20:1023-1028.
JAIN A, KOYANI R, MUÑOZ C, et al.. Magnetic-luminescent cerium-doped gadolinium aluminum garnet nanoparticles for simultaneous imaging and photodynamic therapy of cancer cells[J].J. Colloid Interface Sci., 2018, 526:220-229.
CASTILLO R R, VALLET-REGÍ M. Functional mesoporous silica nanocomposites:biomedical applications and biosafety[J].Int. J. Mol. Sci., 2019, 20(4):929-1-30.
DENG Z H, CHEN J, LIU Z G, et al.. Structure, chemical state and luminescent properties of Ce, Gd:YAG transparent ceramic for flip-chip white LED application[J].Chin. J. Struct. Chem., 2018, 37(6):948-954.
LI M J, WU Y C, YEN F S, et al.. Influence of ionic mobility on the phase transformation route in Y3Al5O12 (YAG) stoichiometry[J].J. Eur. Ceram. Soc., 2011, 31(12):2099-2106.
XIAO W G, LIU X F, ZHANG J H, et al.. Realizing visible light excitation of Tb3+ via highly efficient energy transfer from Ce3+ for LED-based applications[J].Adv. Opt. Mater., 2019, 7(9):1801677.
HERNÁNDEZ-ADAME L, MÉNDEZ-BLAS A, RUIZ-GARCÍA J, et al.. Synthesis, characterization, and photoluminescence properties of Gd:Tb oxysulfide colloidal particles[J].Chem. Eng. J., 2014, 258:136-145.
TENG X, LI J K, DUAN G B, et al.. Development of Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green-emitting phosphors[J].J. Lumin., 2016, 179:165-170.
GUO K, HUANG M L, CHEN H H, et al.. Comparative study on photoluminescence of amorphous and nano-crystalline YAG:Tb phosphors prepared by a combustion method[J].J. Non-Cryst. Solids, 2012, 358(1):88-92.
PARK J Y, JUNG H C, RAJU G S R, et al.. Solvothermal synthesis and luminescence properties of Tb3+-doped gadolinium aluminum garnet[J].J. Lumin., 2010, 130(3):478-482.
Hertle E, Chepyga L, Batentschuk M, et al.. Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry[J].J. Lumin., 2017, 182:200-207.
ISHIWADA N, FUJII E, YOKOMORI T. Evaluation of Dy-doped phosphors (YAG:Dy, Al2O3:Dy, and Y2SiO5:Dy) as thermographic phosphors[J].J. Lumin., 2018, 196:492-497.
HASHEMI A, VETTER A, JOVICIC G, et al.. Temperature measurements using YAG:Dy and YAG:Sm under diode laser excitation (405 nm)[J].Meas. Sci. Technol., 2015, 26(7):075202.
LI J K, LI J G, LIU S H, et al.. Greatly enhanced Dy3+ emission via efficient energy transfer in gadolinium aluminate garnet (Gd3Al5O12) stabilized with Lu3+[J].J. Mater. Chem. C, 2013, 1(45):7614-7622.
HERTLE E E, CHEPYGA L, OSVET A, et al.. (Gd, Lu)AlO3:Dy3+and (Gd, Lu)3Al5O12:Dy3+ as high-temperature thermographic phosphors[J].Meas. Sci. Technol., 2019, 30(3):034001.
RYBA-ROMANOWSKI W, KOMAR J, NIEDŹWIEDZKI T, et al.. Excited state relaxation dynamics and up-conversion phenomena in Gd3(Al, Ga)5O12 single crystals co-doped with holmium and ytterbium[J].J. Lumin., 2016, 656:573-580.
NIEDŹWIEDZKI T, RYBA-ROMANOWSKI W, KOMAR J, et al.. Excited state relaxation dynamics and up-conversion phenomena in Gd3(Al, Ga)5O12 single crystals co-doped with erbium and ytterbium[J].J. Lumin., 2016, 177:219-227.
KOMAR J, SOLARZ P, JEOWSKI A, et al.. Investigation of intrinsic and extrinsic defects in solid solution Gd3(Al, Ga)5O12 crystals grown by the Czochralski method[J].J. Alloys Compd., 2016, 688:96-103.
LI J K, LI J G, LI J, et al.. Photoluminescent properties of new up-conversion phosphors of Yb/Tm co-doped (Gd1-x-Lux)3Al5O12 (x=0.1-0.5) garnet solid solutions[J].J. Alloys Compd., 2014, 582:623-627.
BOHACEK P, KRASNIKOV A, KUČERA M, et al.. Defects creation in the undoped Gd3(Ga, Al)5O12 single crystals and Ce3+-doped Gd3(Ga, Al)5O12 single crystals and epitaxial films under irradiation in the Gd3+-related absorption bands[J].Opt. Mater., 2019, 88:601-605.
KAMADA K, YANAGIDA T, PEJCHAL J, et al.. Scintillator-oriented combinatorial search in Ce-doped (Y, Gd)3(Ga, Al)5O12 multicomponent garnet compounds[J].J. Phys. D-Appl. Phys., 2011, 44(50):505104.
FERRI A, GOLA A, SERRA N, et al.. Performance of FBK high-density SiPM technology coupled to Ce:LYSO and Ce:GAGG for TOF-PET[J].Phys. Med. Biol., 2014, 59(4):869-880.
KAMADA K, YANAGIDA T, PEJCHAL J, et al.. Crystal growth and scintillation properties of Ce doped Gd3(Ga, Al)5O12 single crystals[J].IEEE Trans. Nucl. Sci., 2012, 59(5):2112-2115.
KUROSAWA S, SHOJI Y, YOKOTA Y, et al.. Czochralski growth of Gd3(Al5-xGax)O12 (GAGG) single crystals and their scintillation properties[J].J. Cryst. Growth, 2014, 393:134-137.
ZORENKO Y, GORBENKO V, ZORENKO T, et al.. High-perfomance Ce-doped multicomponent garnet single crystalline film scintillators[J].Phys. Status Solidi R. Res. Lett., 2015, 9(8):489-493.
ZORENKO Y, GORBENKO V, VASYLKIV J, et al.. Growth and luminescent properties of scintillators based on the single crystalline films of Lu3-xGdxAl5O12:Ce garnet[J].Mater. Res. Bull., 2015, 64:355-363.
BOK J, LALINSKY' O, HANUŠ M, et al.. GAGG:Ce single crystalline films:new perspective scintillators for electron detection in SEM[J].Ultramicroscopy, 2016, 163:1-5.
LI J, SAHI S, GROZA M, et al.. Optical and scintillation properties of Ce3+-doped LuAG and YAG transparent ceramics:a comparative study[J].J. Am. Ceram. Soc., 2017, 100(1):150-156.
CHEN X Q, QIN H M, ZHANG Y, et al.. Highly transparent ZrO2-doped (Ce, Gd)3Al3Ga2O12 ceramics prepared via oxygen sintering[J].J. Eur. Ceram. Soc., 2015, 35(14):3879-3883.
XU J, UEDA J, TANABE S. Design of deep-red persistent phosphors of Gd3Al5-xGaxO12:Cr3+ transparent ceramics sensitized by Eu3+ as an electron trap using conduction band engineering[J].Opt. Mater. Express, 2015, 5(5):963-968.
YANAGIDA T, KAMADA K, FUJIMOTO Y, et al.. Comparative study of ceramic and single crystal Ce:GAGG scintillator[J].Opt. Mater., 2013, 35(12):2480-2485.
OMIDVARI N, SHARMA R, GANKA T R, et al.. Characterization of 1.2×1.2 mm2 silicon photomultipliers with Ce:LYSO, Ce:GAGG, and Pr:LuAG scintillation crystals as detector modules for positron emission tomography[J].J. Instrum., 2017, 12(4):P04012.
LIU S, SUN P, LIU Y F, et al.. Warm white light with a high color-rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs[J].ACS Appl. Mater. Interfaces, 2019, 11(2):2130-2139.
0
Views
274
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution