浏览全部资源
扫码关注微信
牡丹江师范学院 物理与电子工程学院, 黑龙江省超硬材料重点实验室, 黑龙江 牡丹江 157011
Received:02 August 2020,
Accepted:2020-8-31,
Published:2020-11
移动端阅览
Shuai LI, Lei ZHANG. Theoretical Calculation of Emission Properties of CuInS2/ZnS Quantum Dot Fiber[J]. Chinese journal of luminescence, 2020, 41(11): 1403-1410.
Shuai LI, Lei ZHANG. Theoretical Calculation of Emission Properties of CuInS2/ZnS Quantum Dot Fiber[J]. Chinese journal of luminescence, 2020, 41(11): 1403-1410. DOI: 10.37188/CJL.20200229.
在二能级系统近似下,对CuInS
2
/ZnS量子点光纤的发光性质进行理论计算,得到在不同量子点荧光寿命、斯托克斯频移和吸收-发射截面时,量子点发光沿光纤的传输情况。结果表明,当3个参数一定时,量子点光纤的发光强度随着光纤长度的增加而增加,但最后都趋于饱和或有所下降。当光纤长度一定时,荧光寿命、斯托克斯频移和吸收-发射截面每变化原来数值的1倍,光纤发光的相对强度分别改变7.1,10.52和2.8,因此斯托克斯频移对光纤发光强度的影响最大,其次为荧光寿命,影响最小的是吸收-发射截面。但是对光谱峰值位置影响最大的是吸收-发射截面,在80 cm光纤中,截面每增加1倍,光谱红移5.36 nm。理论计算的发光强度随光纤长度的变化趋势符合文献中的实验数据。本文为量子点光纤中掺杂材料的选择提供了一种实用的方法。
The emission properties of CuInS
2
/ZnS quantum dot optical fibers(QD-OFs) were theoretically calculated under the two-level system approximation
and the transmission of QD emission along the optical fiber was obtained under different QD fluorescence lifetime
Stokes shift and absorption-emission cross section(AECS). The results showed that when the three parameters were fixed
the emission intensity of QD-OFs increased with the increasing fiber length
but all of them eventually tended to saturation or decreased. When the fiber length was fixed
the relative intensity of the fiber emission was changed by 7.1
10.52 and 2.8 for each change of the fluorescence lifetime
Stokes shift and AECS by 1 time. Therefore
Stokes shift had the greatest influence on the OF emission intensity
followed by the fluorescence lifetime
and the least influence was the AECS. However
the AECS had the greatest influence on the spectral peak position. In the 80 cm OF
the spectral redshift was 5.36 nm when the AECS increased by 1 time. The variation trend of emission intensity with fiber length calculated by theory accorded with the experimental data in the literature. This paper provides a practical method for the selection of doped materials in QD-OFs.
LAW M, LUTHER J M, SONG Q, et al .. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines[J]. J. Am. Chem. Soc ., 2008, 130(18):5974-5985.
ZAIATS G, SHAPIRO A, YANOVER D, et al .. Optical and electronic properties of nonconcentric PbSe/CdSe colloidal quantum dots[J]. J. Phys. Chem ., 2015, 6(13):2444-2448.
MEZRAG F, BOUARISSA N, BOUCENNA M. The size-dependent electronic and optical properties of InAs quantum dots[J]. Optik , 2016, 127(3):1167-1170.
XIA C H, WU W W, YU T, et al .. Size-dependent band-gap and molar absorption coefficients of colloidal CuInS 2 quantum dots[J]. ACS Nano , 2018, 12(8):8350-8361.
DAI Q Q, WANG Y N, LI X B, et al .. Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals[J]. ACS Nano , 2009, 3(6):1518-1524.
季洪雷, 周青超, 潘俊, 等.量子点液晶显示背光技术[J].中国光学, 2017, 10(5):666-680.
JI H L, ZHOU Q C, PAN J, et al .. Advances and prospects in quantum dots based backlights[J]. Chin. Opt ., 2017, 10(5):666-680. (in Chinese)
张锋, 薛建设, 喻志农, 等.量子点发光在显示器件中的应用[J].液晶与显示, 2012, 27(2):163-167.
ZHANG F, XUE J S, YU Z N, et al .. Quantum-dot light emitting device for displays[J]. Chin. J. Liq. Cryst. Disp. , 2012, 27(2):163-167. (in Chinese)
袁曦, 郑金桔, 李海波, 等. Mn掺杂ZnSe量子点变温发光性质研究[J].中国光学, 2015, 8(5):806-813.
YUAN X, ZHENG J J, LI H B, et al .. Temperature-dependent photoluminescence properties of Mn-doped ZnSe quantum dots[J]. Chin. Opt ., 2015, 8(5):806-813. (in Chinese)
KUMBHAKAR P.半导体量子点材料在Nd:YAG激光辐照下的非线性光学效应[J].光学精密工程, 2011, 19(2):228-236.
KUMBHAKAR P. Observation of nonlinear optical effects in some semiconductor quantum dot materials using Nd:YAG laser radiation[J]. Opt. Precision Eng ., 2011, 19(2):228-236. (in Chinese)
叶芸, 喻金辉, 林淑颜, 等.量子点背光技术的研究进展[J].中国光学, 2020, 13(1):14-27.
YE Y, YU J H, LIN S Y, et al .. Progress of quantum dot backlight technology[J]. Chin. Opt ., 2020, 13(1):14-27. (in Chinese)
邢笑雪, 王宪伟, 秦宏伍, 等. PbSe量子点近红外光源的CH 4 气体检测[J].中国光学, 2018, 11(4):662-668.
XING X X, WANG X W, QIN H W, et al .. CH 4 detection based on near-infrared luminescence of PbSe quantum dots[J]. Chin. Opt ., 2018, 11(4):662-668. (in Chinese)
HREIBI A, GÉRÔME F, AUGUSTE J L, et al .. Semiconductor-doped liquid-core optical fiber[J]. Opt. Lett ., 2011, 36(9):1695-1697.
CHENG C, ZHANG H. Characteristics of bandwidth, gain and noise of a PbSe quantum dot-doped fiber amplifier[J]. Opt. Commun ., 2007, 277(2):372-378.
CHENG C, BO J F, YAN J H, et al .. Experimental realization of a PbSe-quantum-dot doped fiber laser[J]. IEEE Photonics Technol. Lett ., 2013, 25(6):572-575.
WU H, ZHANG Y, YAN L, et al .. Temperature effect on colloidal PbSe quantum dot-filled liquid-core optical fiber[J]. Opt. Mater. Express , 2014, 4(9):1856-1865.
张冰, 张磊, 张蕾. PbSe量子点液芯光纤的温度效应[J].发光学报, 2017, 38(5):623-629.
ZHANG B, ZHANG L, ZHANG L. Temperature effect on PbSe quantum dot-doped liquid core fiber[J]. Chin. J. Lumin ., 2017, 38(5):623-629. (in Chinese)
ZHANG Z Y, WANG Y, JIANG Y H, et al .. Colloidal PbSe quantum dot-filled liquid-core optical fiber for temperature sensing[J]. Mater. Res. Express , 2019, 6(7):075040-1-14.
ZHANG L, ZHANG B, NING L, et al .. Comprehensive size effect on PbSe quantum dot-doped liquid-core optical fiber[J]. Opt. Commun ., 2017, 383:371-377.
ZHANG L, ZHAO L P, ZHENG Y J. Enhanced emission from a PbSe/CdSe core/shell quantum dot-doped optical fiber[J]. Opt. Mater. Express , 2018, 8(11):3551-3560.
XIA C H, WINCKELMANS N, PRINS P T, et al .. Near-infrared-emitting CuInS 2 /ZnS dot-in-rod colloidal heteronanorods by seeded growth[J]. J. Am. Chem. Soc ., 2018, 140(17):5755-5763.
HUANG X, YU R M, YANG X Q, et al .. Efficient CuInS 2 /ZnS based quantum dot light emitting diodes by engineering the exciton formation interface[J]. J. Lumin ., 2018, 202:339-344.
DENG B, ZHU Y Q, LI J L, et al .. Low temperature synthesis of highly bright green emission CuInS 2 /ZnS quantum dots and its application in light-emitting diodes[J]. J. Alloys Compd ., 2020, 845:155400.
JEONG S, KO M, JEONG S, et al .. Optical transitions of CuInS 2 nanoparticles:two types of absorption and two types of emission[J]. J. Phys. Chem. C, 2020, 124(26):14400-14408.
BERENDS A C, MANGNUS M J J, XIA C H, et al .. Optoelectronic properties of ternary Ⅰ-Ⅲ-Ⅵ 2 semiconductor nanocrystals:bright prospects with elusive origins[J]. J. Phys. Chem. Lett ., 2019, 10(7):1600-1616.
RICE W D, MCDANIEL H, KLIMOV V I, et al .. Magneto-optical properties of CuInS 2 nanocrystals[J]. J. Phys. Chem. Lett ., 2014, 5(23):4105-4109.
KNOWLES K E, HARTSTEIN K H, KILBURN T B, et al .. Luminescent colloidal semiconductor nanocrystals containing copper:synthesis, photophysics, and applications[J]. Chem. Rev ., 2016, 116(18):10820-10851.
LIU W Y, ZHANG Y, ZHAI W W, et al .. Temperature-dependent photoluminescence of ZnCuInS/ZnSe/ZnS quantum dots[J]. J. Phys. Chem. C, 2013, 117(38):19288-19294.
LI L, DAOU T J, TEXIER I, et al .. Highly luminescent CuInS 2 /ZnS core/shell nanocrystals:cadmium-free quantum dots for in vivo imaging[J]. Chem. Mater ., 2009, 21(12):2422-2429.
JARA D H, YOON S J, STAMPLECOSKIE K G, et al .. Size-dependent photovoltaic performance of CuInS 2 quantum dot-sensitized solar cells[J]. Chem. Mater ., 2014, 26(24):7221-7228.
WU H, ZHANG Y, LU M, et al .. Reduced reabsorption and enhanced propagation induced by large Stokes shift in quantum dot-filled optical fiber[J]. J. Nanopart. Res ., 2016, 18(7):206.
ZHANG L, DU J H, ZHANG J, et al .. Enhanced emission, propagation, and spectral stability in CuInS 2 /ZnS core/shell quantum dot-doped optical fiber[J]. J. Nanophotonics , 2019, 13(4):046003.
BOOTH M, BROWN A P, EVANS S D, et al .. Determining the concentration of CuInS 2 quantum dots from the size-dependent molar extinction coefficient[J]. Chem. Mater ., 2012, 24(11):2064-2070.
ZHANG L, ZHANG Y, WU H, et al .. Multiparameter-dependent spontaneous emission in PbSe quantum dot-doped liquid-core multi-mode fiber[J]. J. Nanopart. Res ., 2013, 15(10):2000.
0
Views
87
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution