Jun WANG, Zan FENG, Guo-lin WU, et al. Pr3+ Doped Ge-Ga-Se-CsI Chalcohalide Glass and Fiber Preparation. [J]. Chinese Journal of Luminescence 41(11):1343-1350(2020)
DOI:
Jun WANG, Zan FENG, Guo-lin WU, et al. Pr3+ Doped Ge-Ga-Se-CsI Chalcohalide Glass and Fiber Preparation. [J]. Chinese Journal of Luminescence 41(11):1343-1350(2020) DOI: 10.37188/CJL.20200223.
Pr3+ Doped Ge-Ga-Se-CsI Chalcohalide Glass and Fiber Preparation
Different series of Pr,3+, doped GeSe,2,-Ga,2,Se,3,-CsI(GGC)chalcogenide glass were prepared by a melt-quenching method. Under the excitation of 2.0 μm wavelength, the emission spectra of bulk glass (2 mm) and glass column(6 mm) were compared. The intensity parameter ,Ω,i,(,i,=2, 4, 6) and radiative lifetime ,τ,rad, of Pr,3+, doped Ge-Ga-Se-CsI chalcogenide glass are calculated and analyzed by Judd-Ofelt theory. The fluorescence lifetime of the glass(0.5% Pr ,3+,:3.08 ms) was measured by fitting the decay curve. The fabricated fiber has a double cladding structure, the fiber loss is measured by cut-back method and the minimum loss at 7.6 μm is 2.27 dB/cm.
关键词
硫卤玻璃Judd-Ofelt理论辐射寿命光纤损耗
Keywords
chalcohalide glassJudd-Ofelt theoryradiative lifetimefiber loss
references
SEDDON A B, TANG Z Q, FURNISS D, et al.. Progress in rare-earth-doped mid-infrared fiber lasers[J].Opt. Express, 2010, 18(25):26704-26719.
JACKSON S D, ANZUETO-SÁNCHEZ G. Chalcogenide glass Raman fiber laser[J].Appl. Phys. Lett., 2006, 88(22):221106-1-3.
SABAPATHY T, AYIRIVEETIL A, KAR A K, et al.. Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass[J].Opt. Mater. Express, 2012, 2(11):1556-1561.
SUJECKI S, SÓJKA L, BEREŚ-PAWLIK E, et al.. Modelling of a simple Dy3+ doped chalcogenide glass fibre laser for mid-infrared light generation[J].Opt. Quant. Electron., 2010, 42(2):69-79.
ZHAO Z M, CHEN P, WANG X S, et al.. A novel chalcohalide fiber with high nonlinearity and low material zero-dispersion via extrusion[J].J. Am. Ceram. Soc., 2019, 102(9):5172-2179.
HOU Y N. The Study of MIR Luminescence Properties of Dy3+-doped Ge-Ga-S-CsI Chalcohalide Glasses [D]. Wuhan: Wuhan University of Technology, 2010. (in Chinese)
CHENARD F, KUIS R A. Chalcogenide fiber for mid-infrared transmission and generation of laser source[C].Proceedings of SPIE Unattended Ground, Sea, and Air Sensor Technologies and Applications Ⅻ, Orlando, Florida, United States, 2010: 769308.
MOIZAN V, NAZABAL V, TROLES J, et al.. Er3+-doped GeGaSbS glasses for mid-IR fibre laser application:synthesis and rare earth spectroscopy[J].Opt. Mater., 2008, 31(1):39-46.
GALSTYAN A, MESSADDEQ S H, FORTIN V, et al.. Tm3+ doped Ga-As-S chalcogenide glasses and fibers[J].Opt. Mater., 2015, 47:518-523.
SHEPHARD J D, KANGLEY R I, HAND R J, et al.. The effect of GaSe on Ga-La-S glasses[J].J. Non-Cryst. Solids, 2003, 326-327:439-445.
CHOI Y G, SONG J H. Local structural environment and intra-4f transition of rare-earth ion in chalcogenide glass:comparison between Dy-doped Ge-As-S and Ge-Ga-S glasses[J].J. Non-Cryst. Solids, 2009, 355(48-49):2396-2399.
SAKR H, FURNISS D, TANG Z, et al.. Superior photoluminescence (PL) of Pr3+-In, compared to Pr3+-Ga, selenide-chalcogenide bulk glasses and PL of optically-clad fiber[J].Opt. Express, 2014, 22(18):21236-21252.
KARAKSINA E V, SHIRYAEV V S, CHURBANOV M F, et al.. Core-clad Pr3+-doped Ga(In)-Ge-As-Se-(I) glass fibers:preparation, investigation, simulation of laser characteristics[J].Opt. Mater., 2017, 72:654-660.
TANG G, YANG Z Y, LUO L, et al.. Optical properties and local structure of Dy3+-doped chalcogenide and chalcohalide glasses[J].J. Rare Earths, 2008, 26(6):889-894.
LI L G, BIAN J Y, JIAO Q, et al.. GeS2-In2S3-CsI chalcogenide glasses doped with rare earth ions for near- and mid-IR luminescence[J].Sci. Rep., 2016, 6:37577.
WANG Z X, GUO H T, XIAO X S, et al.. Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication[J].J. Alloys Compd., 2017, 692:1010-1017.
XU Y S, CHEN D P, ZHANG Q, et al.. Bright red upconversion luminescence of thulium ion-doped GeS2-In2S3-CsI glasses[J].J. Phys. Chem. C, 2009, 113(22):9911-9915.
LI M M, XU Y S, JIA X M, et al.. Mid-infrared emission properties of Pr3+-doped Ge-Sb-Se-Ga-I chalcogenide glasses[J].Opt. Mater. Express, 2018, 8(4):992-1000.
EL-SAYED S M. Far-infrared studies of the amorphous SbxGe28-xSe72 glassy semiconductor[J].Semiconduct. Sci. Technol., 2003, 18(4):337-341.
NĚMEC P, FRUMAROVÁ B, FRUMAR M, et al.. Structure and properties of the pure and Pr3+-doped Ge25Ga5Se70 and Ge30Ga5Se65 glasses[J].J. Non-Cryst. Solids, 2000, 270(1-3):137-146.
GOYAL D R, MAAN A S. Far-infrared absorption in amorphous Sb15GexSe85-x glasses[J].J. Non-Cryst. Solids, 1995, 183(1-2):182-185.
DIEKE G H, CROSSWHITE H M. The spectra of the doubly and triply ionized rare earths[J].Appl. Opt., 1963, 2(7):675-686.
TANABE S. Optical transitions of rare earth ions for amplifiers:how the local structure works in glass[J].J. Non-Cryst. Solids, 1999, 259(1-3):1-9.
LIU Z J, BIAN J Y, HUANG Y, et al.. Fabrication and characterization of mid-infrared emission of Pr3+ doped selenide chalcogenide glasses and fibres[J].RSC Adv., 2017, 7(66):41520-41526.