浏览全部资源
扫码关注微信
1.中国科学院半导体研究所 固态光电信息技术实验室, 北京 100083
2.中国科学院大学 材料科学与光电技术学院, 北京 100049
Published:2020-10,
Received:11 July 2020,
Accepted:10 August 2020
扫 描 看 全 文
Chang-da XU, Wei CHEN, De-chao BAN, et al. Design of Sampled Grating Distributed Bragg Reflector Laser with Wide Tuning Range in L-band. [J]. Chinese Journal of Luminescence 41(10):1279-1286(2020)
Chang-da XU, Wei CHEN, De-chao BAN, et al. Design of Sampled Grating Distributed Bragg Reflector Laser with Wide Tuning Range in L-band. [J]. Chinese Journal of Luminescence 41(10):1279-1286(2020) DOI: 10.37188/CJL.20200201.
L波段取样光栅分布布拉格反射(SG-DBR)激光器在高速光通信与无源光网络中具有广泛的应用前景。本文以InGaAsP作为无源波导区材料,从理论上分析了实现L波段宽调谐SG-DBR激光器所需的关键参数,包括前后取样光栅的反射峰间隔、取样周期、占空比等。同时采用传输矩阵模型,讨论了取样对数与前、后取样光栅反射特性的关系。最后得到了一组优化的SG-DBR激光器参数,其对应的调谐范围达到47.6 nm。
L-band SG-DBR lasers have wide application prospects in high-speed optical communication and passive optical networks. In this paper
using InGaAsP as the passive waveguide region material
the key parameters which are necessary to realize the wide-tuned SG-DBR laser in L-band are theoretically analyzed
including the reflection peak interval
number of sample period and duty ratio of the sampled grating. At the same time
the relationship between the sampling logarithm and the reflection characteristics of the front sampling grating(FSG) and rear sampling grating(RSG) is discussed by using the transmission matrix model. Finally
a set of optimized SG-DBR laser parameters were obtained
and the corresponding tuning range reached 47.6 nm.
L波段传输矩阵法SG-DBR激光器宽调谐范围
L-bandtransmission matrix methodSG-DBR laserwide tuning range
JAYARAMAN V, MATHUR A, COLDREN L A, et al.. Extended tuning range in sampled grating DBR lasers[J].IEEE Photonics Technol. Lett., 1993, 5(5):489-491.
JAYARAMAN V, CHUANG Z M, COLDREN L A. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings[J].IEEE J. Quant. Electron., 1993, 29(6):1824-1834.
RARING J W, SKOGEN E J, JOHANSSON L A, et al.. Widely tunable negative-chirp SG-DBR laser/EA-modulated transmitter[J].J. Lightwave Technol., 2005, 23(1):80-86.
董雷.宽可调谐SGDBR半导体激光器理论和实验研究[D].济南: 山东大学, 2010.
DONG L. Theoretical and Analysis and Experimental Research on Widely Tunable SGDBR Laser Diode[D]. Jinan: Shandong University, 2010. (in Chinese)
VEERASUBRAMANIAN V, BEAUDIN G, GIGUÈRE A, et al.. A vertical SG-DBR based tunable hybrid silicon evanescent laser[C].Proceedings of 2011 Laser Science to Photonic Applications, Baltimore, MD, USA, 2011: 1-2.
OH S H, YOON K, KWON O K, et al.. Monolithically Integrated SG-DBR tunable lasers for optical communications[C].Proceedings of 2018 Opto-Electronics and Communications Conference, Jeju Island, 2018: 1-2.
RARING J W, SKOGEN E J, DENBAARS S P, et al.. Demonstration of negative chirp characteristics over wide wavelength range using monolithically integrated SG-DBR laser/electroabsorption modulator[J].Electron. Lett., 2004, 40(25):1599-1600.
OH S H, LEE J M, KIM K S, et al.. Fabrication of tunable sampled grating DBR laser integrated monolithically with optical semiconductor amplifier using planar buried heterostructure[J].Jpn. J. Appl. Phys., 2004, 43(10B):L1343-L1345.
LU M Z, PARK H C, SIVANANTHAN A, et al.. Monolithic integration of a high-speed widely tunable optical coherent receiver[J].IEEE Photonics Technol. Lett., 2013, 25(11):1077-1080.
NGUYEN K N, GARCIA J M, LIVELY E, et al.. Monolithically integrated dual-quadrature coherent receiver on InP with 30 nm tunable SG-DBR local oscillator[C].Proceedings of 2011 European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1-3.
TRAN M A, HUANG D N, GUO J, et al.. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers[J].IEEE J. Sel. Top. Quant. Electron., 2020, 26(2):1500514-1-16.
CARO L, DERNAIKA M, KELLY N P, et al.. An integration-friendly regrowth-free tunable laser[J].IEEE Photonics Technol. Lett., 2018, 30(3):270-272.
鲁韶华, 许鸥, 冯素春, 等.基于啁啾相移光纤光栅的滤波器设计及应用[J].光学学报, 2008, 29(9):1675-1680.
LU S H, XU O, FENG S C, et al.. Design and application of optical filters based on chirped phase-shifted fiber gratings[J].Acta Opt. Sinica, 2008, 29(9):1675-1680. (in Chinese)
李思敏.基于重构等效啁啾技术的DFB半导体激光器与光子集成器件研究[D].南京: 南京大学, 2014.
LI S M. Study on DFB Semiconductor Laser Based on Reconstruction-equivalent-chirp Technique and Photonic Integrated Device [D]. Nanjing: Nanjing University, 2014. (in Chinese)
蔡晓锋, 赵岩. DFB光纤激光器中相移光栅优化分析[J].中国电子科学研究院学报, 2010, 5(1):53-56.
CAI X F, ZHAO Y. Optimization analysis on the phase shift grating of DFB fiber laser[J].J. CAEIT, 2010, 5(1):53-56. (in Chinese)
DENG Q F, ZHU H L, XIE X, et al.. Low chirp EMLs fabricated by combining SAG and double stack active layer techniques[J].IEEE Photonics J., 2018, 10(2):7902007-1-7.
TAWFIEQ M, WENZEL H, BROX O, et al.. Widely tunable high power sampled-grating MOPA system emitting around 970 nm[C].Proceedings of 2018 Conference on Lasers and Electro-Optics Pacific Rim, Hong Kong, China, 2018: 1-2.
陈向飞, 肖如磊, 陆骏.基于REC技术的可调谐半导体激光器[J/OL].中兴通讯技术, 2020-04-16.https://www.cnki.net/KCMS/detail/34.1228.tn.20200415.1902.002.htmlhttps://www.cnki.net/KCMS/detail/34.1228.tn.20200415.1902.002.html.
CHEN X F, XIAO R L, LU J. Tunable semiconductor laser based on REC technology[J/OL].ZTE Technol. J., 2020-04-16. https://www.cnki.net/KCMS/detail/34.1228.tn.20200415.1902.002.htmlhttps://www.cnki.net/KCMS/detail/34.1228.tn.20200415.1902.002.html. (in Chinese)
0
Views
56
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution