浏览全部资源
扫码关注微信
1.福州大学 物理与信息工程学院, 福建 福州 350108
2.中国福建光电信息科学与技术创新实验室, 福建 福州 350117
Published:2020-10,
Received:03 July 2020,
Accepted:2020-8-4
移动端阅览
ZI-WEN YAN, QUN YAN, DIAN-LUN LI, et al. Research Progress of High Integration Density μLED Display Technology. [J]. Chinese journal of luminescence, 2020, 41(10): 1309-1317.
ZI-WEN YAN, QUN YAN, DIAN-LUN LI, et al. Research Progress of High Integration Density μLED Display Technology. [J]. Chinese journal of luminescence, 2020, 41(10): 1309-1317. DOI: 10.37188/CJL.20200191.
微型发光二极管(μLED)是当今国际最前沿的显示技术之一,它一般指单个尺寸小于50 μm的LED阵列。μLED相对于液晶显示(LCD)、有机发光二极管(OLED)显示等技术有其独特的优势:寿命长、响应时间短、亮度高。最重要的是,它可以实现高度集成显示,既包括像素密度远远高于常规显示技术的高PPI显示器件,也包括我们首次提出的集成了某些非显示元件的超大规模集成半导体信息显示器件(HISID)。在许多显示技术的指标上,μLED的性能都很优异。但是,由于μLED将常规LED器件的尺寸大大缩小,且往往密度提高,因此产生了许多新的技术和物理上的挑战,例如巨量转移技术、全彩化显示等,所以μLED尚未实现真正意义上的产业化。本文对高度集成μLED显示技术的研究和发展情况进行了较系统的论述,首先对μLED的基本原理和结构进行了介绍,然后对其重点核心技术进行了分类研究和点评,最后对μLED显示技术的发展方向及其应用前景做出了分析。
Micro light-emitting diode(μLED) is one of the most cutting-edge display technologies in the world. It generally refers to the LED array with a single mesa size less than 50 microns. Compared with liquid crystal display(LCD) and organic light emitting diode(OLED) display
μLED display technology has its unique advantages: long lifetime
short response time
and high brightness. Most importantly
it enables the realization of highly integrated displays
which includes both high-PPI displays with much higher pixel densities than conventional display technologies
and highly integrated semiconductor information displays(HISID) that have been proposed first by us and contain certain non-display components. In many figures of merit of display technology
μLEDs perform excellently. However
as μLEDs greatly reduce the size of conventional LED devices and typically have an increased device density
many new technical and physical challenges have arisen
such as mass transfer technology
full-color display
etc
. Therefore
μLEDs have not yet achieved any real industrialization. In this paper
the highly integrated μLED display technology research and progress are described systematically. First of all
the basic principle and structure of μLEDs are introduced
followed by the classification and review of the key technologies. Finally
the development trends and application prospects of the μLED display technology are analyzed.
微型发光二极管(μLED)驱动巨量转移全彩化高度集成
micro light-emitting diode(μLED)drivermass transfer technologycolorizationhigh integration density
BI X P, XIE T, FAN B, et al.. A flexible, micro-lens-coupled LED stimulator for optical neuromodulation[J].IEEE Trans. Biomed. Circuits Syst., 2016, 10(5):972-978.
SAND A, RAKKOLAINEN I. Mixed reality with multimodal head-mounted pico projector[C].Proceedings of Virtual Reality International Conference: Laval Virtual, Laval, France, 2013: 1-2.
LEE V W, TWU N, KYMISSIS I. Micro-LED technologies and applications[J].Inf. Disp., 2016, 32(6):16-23.
HENRY W. MicroLED arrays find applications in the very small[J].Photonics Spectra, 2013, 47(3):52-55.
李继军, 聂晓梦, 李根生, 等.平板显示技术比较及研究进展[J].中国光学, 2018, 11(5):695-710.
LI J J, NIE X M, LI G S, et al.. Comparison and research progress of flat panel display technology[J].Chin. J. Opt., 2018, 11(5):695-710. (in Chinese)
CHONG W C, CHO W K, LIU Z J, et al.. 1 700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC[C].Proceedings of 2014 IEEE Compound Semiconductor Integrated Circuit Symposium, La Jolla, CA, USA, 2014: 1-4.
WANG Z, SHAN X Y, CUI X G, et al.. Characteristics and techniques of GaN-based micro-LEDs for application in next-generation display[J].J. Semicond., 2020, 41(4):041606.
TEMPLIE F. GaN-based emissive microdisplays:a very promising technology for compact, ultra-high brightness display systems[J].J. SID, 2016, 24(11):669-675.
WONG M S, HWANG D, ALHASSAN A I, et al.. High efficiency of Ⅲ-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition[J].Opt. Express, 2018, 26(16):21324-21331.
KIM H M, UM J G, LEE S, et al.. 66-4:high brightness active matrix micro-LEDs with LTPS TFT backplane[J].SID Symp. Dig. Tech. Pap., 2018, 49(1):880-883.
OLIVIER F, TIRANO S, DUPRÉ L, et al.. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application[J].J. Lumin., 2017, 191:112-116.
ZHANG K, PENG D, CHONG W C, et al.. Investigation of photon-generated leakage current for high-performance active matrix micro-LED displays[J].IEEE Trans. Electron Devices, 2016, 63(12):4832-4838.
LIU Z J, CHONG W C, WONG K M, et al.. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays[J].J. Display Technol., 2013, 9(8):678-682.
MUKAI T. Recent progress in group-Ⅲ nitride light-emitting diodes[J].IEEE J. Sel. Top. Quantum Electron., 2002, 8(2):264-270.
MCGOVERN B, BERLINGUER PALMINI R, GROSSMAN N, et al.. A new individually addressable micro-LED array for photogenetic neural stimulation[J].IEEE Trans. Biomed. Circuits Syst., 2010, 4(6):469-476.
UM J G, JEONG D Y, JUNG Y, et al.. Active-matrix GaN μ-LED display using oxide thin-film transistor backplane and flip chip LED bonding[J].Adv. Electron. Mater., 2019, 5(3):1800617-1-8.
CHEN C J, CHEN H C, LIAO J H, et al.. Fabrication and characterization of active-matrix 960×540 blue GaN-based micro-LED display[J].IEEE J. Quantum Electron., 2019, 55(2):3300106-1-6.
ZHANG X, LI P A, ZOU X B, et al.. Active matrix monolithic LED micro-display using GaN-on-Si epilayers[J].IEEE Photon. Technol. Lett., 2019, 31(11):865-868.
VAN DOMMELEN R, FANZIO P, SASSO L. Surface self-assembly of colloidal crystals for micro- and nano-patterning[J].Adv. Colloid Interface Sci., 2018, 251:97-114.
PARK S C, FANG J, BISWAS S, et al.. Approaching roll-to-roll fluidic self-assembly:relevant parameters, machine design, and applications[J].J. Microelectromech. Syst., 2015, 24(6):1928-1937.
CHO S, LEE D, KWON S. Fluidic self-assembly transfer technology for Micro-LED display[C].Proceedings of The 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors ⅩⅩⅩⅢ, Berlin, Germany, 2019: 402-404.
CORBETT B, LOI R, ZHOU W D, et al.. Transfer print techniques for heterogeneous integration of photonic components[J].Prog. Quantum Electron., 2017, 52:1-17.
BOWER C A, MEITL M A, BONAFEDE S, et al.. Heterogeneous integration of microscale compound semiconductor devices by micro-transfer-printing[C].Proceedings of The 2015 IEEE 65th Electronic Components and Technology Conference, San Diego, CA, USA, 2015: 963-967.
BIBL A, HIGGINSON J A, HU H H, et al.. Method of transferring and bonding an array of micro devices: USA, WO/2013/119671[P]. 2013-08-15.
DELAPORTE P, ALLONCLE A P. Laser-induced forward transfer:a high resolution additive manufacturing technology[J].Opt. Laser Technol., 2016, 78:33-41.
SHARMA B K, JANG B, LEE J E, et al.. Load-controlled roll transfer of oxide transistors for stretchable electronics[J].Adv. Funct. Mater., 2013, 23(16):2024-2032.
PENG D, ZHANG K, CHAO V S D, et al.. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) micro-displays by CoB[J].J. Display Technol., 2016, 12(7):742-746.
KIM W H, JANG Y J, KIM J Y, et al.. High-performance color-converted full-color micro-LED array[J].Appl. Sci., 2020, 10(6):2112.
LI P A, ZHANG X, LI Y F, et al.. Monolithic full-color LED micro-display using dual wavelength LED epilayers[C].Proceedings of International Display Workshops, Sapporo, Japan, 2019: 770-773.
ZHUANG Z, GUO X, LIU B, et al.. High color rendering index hybrid Ⅲ-nitride/nanocrystals white light-emitting diodes[J].Adv. Funct. Mater., 2016, 26(1):36-43.
LIU Z J, CHONG W C, WONG K M, et al.. A novel BLU-free full-color LED projector using LED on silicon micro-displays[J].IEEE Photon. Technol. Lett., 2013, 25(23):2267-2270.
0
Views
206
下载量
12
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution