
材料合成及性能
采用高温熔融法制备了一定质量比例的SiO2-YAG:Ce3+片状荧光玻璃,厚度为0.2mm,分析其XRD物相、光学和SEM微观结构、PL光谱。结果表明:荧光玻璃保留了晶相,荧光粉颗粒在玻璃基质中均匀分布,荧光玻璃和荧光粉的激发响应关系一致。在465nm蓝光激发下,发射波长均在535nm附近,表明荧光玻璃除含有玻璃相,还有荧光粉的物质结构特性。将不同波长蓝光芯片与不同荧光粉含量的荧光玻璃进行封装测试,结果表明:器件的流明效率可达到234.81lm/W;色温和显色指数均随荧光粉含量增加而单调下降,呈现高色温和低显色指数;荧光粉质量分数从6%增加至15%时,不同波长激发下的色坐标x与y呈现大致相同的线性变化率。采用450nm激光激发荧光玻璃,测试样品温度变化发现温升较缓,温降迅速,耐热性能优越。实验结果表明,将荧光玻璃用于LED白光照明封装,能实现流明效率和耐热性能的大幅提升,形成良好的白光输出。
采用高温固相法合成了可被紫外光激发的Ba2SiO4:Gd3+,Tb3+荧光粉。考察了激活离子掺杂量等因素对发光性能的影响。通过X射线衍射(XRD)、荧光(FL)光谱和荧光寿命曲线对所合成样品的结构和发光性能进行表征,研究了Gd3+和Tb3+的特征吸收波长激发Ba2SiO4:Gd3+,Tb3+的发光性能。在275nm(Gd3+:8S7/2→6IJ)激发下,检测到了Tb3+的特征发射。通过对比不同Tb3+掺杂量下Gd3+:6P7/2能级的衰减曲线,发现随着Tb3+掺杂浓度的增加,该能级的荧光寿命不断缩短,表明样品中存在Gd3+→Tb3+的能量传递,传递方式为无辐射共振能量传递。在244nm(Tb3+:4f8→4f75d1)激发下,Gd3+的掺入使得Tb3+的5D3能级的发射逐渐减弱,5D4能级的发射增强。Gd3+的掺入使得544nm(5D4→7F5)处的特征发射增强了59%~128%,结合荧光衰减曲线得出Gd3+的掺入对Tb3+能级中5D3→5D4与7F6→7F0交叉驰豫有促进作用。
以高纯Al2O3、Y2O3和CeO2为原料,采用固相法制备Ce:YAG(掺铈钇铝石榴石)透明陶瓷,研究了稀土离子掺杂浓度以及烧结温度对陶瓷样品光学性能的影响。结果表明:陶瓷片透过率随着烧结温度的升高而增大,1750℃烧结获得的0.5%Ce:YAG陶瓷片的透过率高达81.7%。Ce:YAG陶瓷片的激发峰和发射峰分别位于350nm和530nm处,在白光LED领域具有极大的应用价值。
利用水热反应,以柠檬酸为碳源制备碳量子点,再以2,2,6,6-四甲基哌啶胺为修饰剂,使碳量子点表面的含氧基团与2,2,6,6-四甲基哌啶胺反应,实现了碳量子点的功能化。实验结果表明,修饰后的碳量子点紫外吸收和蓝色荧光发射特性明显优于未修饰的碳量子点。修饰后的碳量子点平均粒径为3.16nm,荧光量子产率为21.2%,水溶性好,颜色浅,可作为高得率浆纸张的光稳定剂使用,并能提高纸张初始白度3ISO%~4ISO%。随着自由基捕获剂基团的引入,碳量子点能有效捕获纸张因光照而产生的活性自由基,提高了纸张的耐光性。
采用简便的化学腐蚀法在45℃下制备了橘红色荧光多孔硅(PS),通过扫描电镜(SEM)、红外光谱(FT-IR)和比表面积(BET)对PS的结构进行了表征。研究发现,Ag+能在PS上发生氧化沉积而猝灭荧光。基于此,建立了一种快速、灵敏检测Ag+的新方法。在优化实验条件下,Ag+浓度与PS的荧光强度在4.5×10-8~6.6×10-7mol/L范围内呈良好的线性关系,检测限为2.2×10-8mol/L,线性相关系数为0.9914。该方法用于水样中Ag+的检测,结果满意。
以溴代十六烷、丙炔醇为原料通过取代反应、还原重排反应制备了十六烷氧基联烯,然后以氯化(三环己基膦)镍作为催化剂,通过控制加料顺序一锅制备了聚3-己基噻吩-b-聚十六烷氧基联烯的嵌段聚合物。通过核磁共振氢谱和体积排除色谱对产物进行了表征和确证。对聚3-己基噻吩-b-聚十六烷氧基联烯嵌段聚合物的热学性能、光学性能及电学性能进行了研究。差示扫描量热法和热重分析结果表明,嵌段共聚物具有两个玻璃化转变温度及两个热分解温度,说明其具有明显相分离。以嵌段共聚物为半导体活性材料,制备了场效应晶体管器件。使用热退火对器件进行热处理,发现迁移率随退火温度的上升而提高。器件在200℃退火温度下的平均迁移率为7.03×10-4cm2·V-1·s-1,最大迁移率为1.3×10-3cm2·V-1·s-1,阈值电压为5.44V。
器件制备及器件物理
为了优化InGaN太阳能电池结构并有效地指导实际电池的制备,研究了n-i-p(p层在下)In组分梯度渐变结构的InGaN太阳能电池的性能特征。通过APSYS软件模拟计算,对比采用p-i-n渐变结构(p层在上)和n-i-p渐变结构(p层在下)的InGaN太阳能电池的器件性能。结果表明,采用n-i-p渐变结构的InGaN电池,i-InGaN层在低In组分下没有明显的优势,而在高In组分下的器件性能较好。在In组分为0.62时,转换效率最高达到8.48%。分析表明,p层在下的n-i-p渐变结构使得InGaN电池的极化电场与耗尽区的内建电场方向一致,有利于载流子的输运。采用n-i-p渐变结构有利于制备高性能的InGaN太阳能电池。
为了得到溶液法制备的高性能的OLED器件,基于咔唑和1,2,4-三氮唑基团及可热交联的苯乙烯基团,设计并合成了可热交联的主体材料VB-CzTAZ。测试结果表明,VB-CzTAZ具有很好的热稳定性(Td:323℃),把该材料溶于氯苯旋涂成膜,该膜在手套箱中190℃下发生热交联。不同溶剂的薄膜清洗实验表明,热交联后的VB-CzTAZ具有优秀的抗溶剂性。基于VB-CzTAZ溶液法制备的绿光磷光器件,最低启动电压为5.1V,最大亮度为2404cd/m2,最大电流效率为4.3cd/A,表明该交联材料可以用于溶液法制备多层OLED器件。
为了研究不同量子阱周期数下GaInAs/GaAsP多量子阱太阳能电池性能的变化规律,利用金属有机化学气相沉积技术(MOCVD)制备了不同周期数的双结多量子阱太阳能电池样品以及无量子阱双结结构的参考样品,利用高分辨率X射线衍射仪(HXRD)和高分辨率透射电镜(TEM)测试了样品的晶体质量,同时在AM0(1×)光谱条件下测试了样品的I-V特性曲线和相应子电池的外量子效率。最终得到了高晶体质量、吸收截止波长在954nm的Ga0.89In0.11As/GaAs0.92P0.08多量子阱结构,扩展波段的外量子效率最高达到75.18%,电池光电转换效率相对于无量子阱结构提升2.77%。通过对比测试结果发现,随着量子阱结构周期数的增加,太阳能电池在扩展波段(890~954nm)的外量子效率不断提高,常规波段的短波响应(300~700nm)会出现下降,长波响应(700~890nm)会出现上升,短路电流和转换效率相应提升并趋于饱和。
为了满足超辐射发光管的短波长应用,采用InAlGaAs/AlGaAs量子点有源区和干法刻蚀工艺制备了短波长弯曲波导超辐射发光管。在1.6A脉冲电流注入下,器件峰值输出功率为29mW,中心波长为880nm,光谱半高宽为20.3nm。比较了干法刻蚀工艺和湿法腐蚀工艺对超辐射发光管器件性能的影响。在1.6A脉冲电流注入下,湿法腐蚀制备的器件峰值输出功率仅为7mW。与湿法腐蚀相比,干法刻蚀可以精确控制波导形状和参数,降低波导损耗,有效增大器件输出功率。
对电荷耦合器件进行了不同剂量率的γ辐照实验,通过多种参数的测试探讨了剂量率与电荷耦合器件性能退化的关系,并对损伤的物理机理进行分析。辐照和退火结果表明:暗信号和暗信号非均匀性是γ辐照的敏感参数,电荷转移效率和饱和输出电压随剂量累积有缓慢下降的趋势;暗场像素灰度值整体抬升,像元之间的差异显著增加;电荷耦合器件的暗信号增量与剂量率呈负相关性,器件存在潜在的低剂量率损伤增强效应。分析认为,剂量率效应是由界面态和氧化物陷阱电荷竞争导致的。通过电子-空穴对复合模型、质子输运模型和界面态形成对机理进行了解释。
介绍了一种具有高阈值电压和大栅压摆幅的常关型槽栅AlGaN/GaN金属氧化物半导体高电子迁移率晶体管。采用原子层淀积(ALD)方法实现Al2O3栅介质的沉积。槽栅常关型AlGaN/GaN MOS-HEMT的栅长(Lg)为2 μm,栅宽(Wg)为0.9 mm(0.45 mm×2),栅极和源极(Lgs)之间的距离为5 μm,栅极和漏极(Lgd)之间的距离为10 μm。在栅压为-20 V时,槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电仅为0.65 nA。在栅压为+12 V时,槽栅常关型AlGaN/GaN MOS-HEMT的栅漏电为225 nA。器件的栅压摆幅为-20~+12 V。在栅压Vgs=+10 V时,槽栅常关型AlGaN/GaN MOS-HEMT电流和饱和电流密度分别达到了98 mA和108 mA/mm (Wg=0.9 mm), 特征导通电阻为4 mΩ·cm2。槽栅常关型AlGaN/GaN MOS-HEMT的阈值电压为+4.6 V,开启与关断电流比达到了5×108。当Vds=7 V时,器件的峰值跨导为42 mS/mm (Wg=0.9 mm,Vgs=+10 V)。在Vgs=0 V时,栅漏间距为10 μm的槽栅常关型AlGaN/GaN MOS-HEMT的关断击穿电压为450 V,关断泄露电流为0.025 mA/mm。
制备了基于酞菁氧钛(TiOPc)的有机光敏场效应管,对氧化铟锡(ITO)衬底器件进行温度优化。实验结果表明,随着衬底温度(Tsub)的增加,器件载流子迁移率(μ)、光暗电流比(P)和光响应度(R)先增加后减小,在Tsub=140℃时达到最大。Tsub=140℃的ITO衬底器件,在波长808nm、光功率密度190mW·cm-2的近红外光照下,最大载流子迁移率达到1.35×10-2cm2·V-1·s-1,最大光暗电流比为250,栅压为-50V时的最大光响应度为1.51mA/W。
制备了结构为ITO/NPB/TCTA/FIrpic:TCTA/Ir(MDQ)2(acac):TmPyPB/FIrpic:TmPyPB/TmPyPB/LiF/Al的有机电致磷光发光器件。通过在双蓝光发光层之间插入较薄的红光层Ir(MDQ)2(acac):TmPyPB调节载流子、激子在各发光层中的分布,并结合TCTA和TmPyPB对发光层内载流子和激子的有效阻挡作用,混合实现白光发射。研究了红光层在不同厚度、不同掺杂浓度下对器件发光性能的影响。结果表明,红光发光层厚度为2nm、质量浓度为5%时,结合蓝光发光层和红光发光层,实现了色坐标为(0.333,0.333)、最大发光效率为11.50cd/A的白光发射。
发光学应用及交叉前沿
为获得太赫兹波对常见衣物布料的穿透特性,基于布料的物理结构以及太赫兹波传输的影响因素,建立了常见布料的太赫兹波传输模型,计算获得了不同相对湿度条件下典型太赫兹波长对布料的透过率。随后,利用太赫兹时域光谱系统对棉质布料样品进行透射实验测试,获得了布料在0.1~2THz范围内不同相对湿度条件下的透过率。通过理论计算结果与实验测试结果的对比分析,验证了该传输模型的有效性,获得了太赫兹波对常见棉质布料的穿透特性。此外,在30%相对湿度条件下,实验研究了多层棉质布料的太赫兹透射特性。研究结果表明,在可见光波段"不透明"的衣物布料,利用太赫兹波可实现良好的"透视",但其对布料的穿透特性一定程度上受到环境相对湿度的影响,该研究对于衣物内隐藏危险物品的快速检测具有重要意义。
合成了一种新型的三元铜配合物[Cu(phen)(SA)2]·H2O(phen=1,10-邻菲啰啉,SA=水杨酸),并以鲱鱼精DNA为靶点,通过紫外吸收光谱法、循环伏安法、差分脉冲伏安法和DNA粘度滴定实验,探讨了配合物与DNA的键合方式。结果表明,SA的羧酸根离子与Cu2+单齿配位,phen的两个氮原子与Cu2+呈双齿配位,形成的配合物在0.489V/0.050V处呈现一对明显的准可逆氧化还原峰,并且中心Cu2+在玻碳电极上的反应主要由扩散过程控制。配合物与DNA作用时,可观察到配合物的紫外光谱出现明显的减色效应,但是红移现象不明显,氧化还原峰的电流减小,峰电位发生正移,并且DNA的粘度随配合物的加入而增大。结论认为,配合物以嵌插方式与DNA发生作用形成1:1的复合物,但插入程度较弱(结合常数为1.55×104L·mol-1)。
为解决目前侧入式导光板网点优化设计中存在经验式手动优化繁琐、且很难达到一个高均匀效果的问题,提出了一种基于模糊优化理论的网点自动优化设计方法。网点形状采用锥形结构,为使目标面上各处的光能分布主要由其正下方网点的散射光贡献,分析了其半顶角与网点位置的关系,并使得网点半顶角仅由其位置决定。以网点半径为主要优化参数,通过隶属度函数将网点结构模糊化,并自定义评价函数来解模糊化实现均匀照明。进而,采用动态数据交换(DDE)技术将Matlab与TracePro进行联立,通过Matlab语言与Scheme语言混编控制TracePro自动进行数据交换、光线追迹与模糊优化。导光板网点优化设计实例仿真结果表明,优化后均匀度达到92.17%,光能利用率达到70.37%,全程实现自动优化,无需任何手动调节。
高线性度的电光调制器是构建微波光子链路的核心器件。硅光子调制器利用PN结的载流子色散效应实现微波信号对光波的调制,基于不同结构PN结的调制器有不同的非线性特性。本文采用二阶无杂散动态范围表征二阶谐波失真度,实验研究了采用侧向PN结和交趾型PN结所构成的Mach-Zehnder(MZ)调制器的二阶谐波失真特性。基于侧向PN结和交趾型PN结的MZ调制器的二阶无杂散动态范围为分别为85.11dB·Hz1/2、78.44dB·Hz1/2,表明基于侧向PN结的MZ调制器具有更好的线性度。