浏览全部资源
扫码关注微信
1. 萍乡学院 江西省工业陶瓷重点实验室, 江西 萍乡 337055
2. 萍乡学院 材料与化学工程学院, 江西 萍乡 337055
收稿日期:2019-07-09,
修回日期:2019-08-19,
网络出版日期:2019-12-05,
纸质出版日期:2019-12-05
移动端阅览
曾慧慧, 肖梅珍, 晏根平等. 氧化锡量子点的合成及对抗坏血酸的灵敏传感研究[J]. 发光学报, 2019,40(12): 1554-1562
ZENG Hui-hui, XIAO Mei-zhen, YAN Gen-ping etc. Synthesis of Tin Oxide Quantum Dots-based Fluorescence Probe for AA Sensitive Detection[J]. Chinese Journal of Luminescence, 2019,40(12): 1554-1562
曾慧慧, 肖梅珍, 晏根平等. 氧化锡量子点的合成及对抗坏血酸的灵敏传感研究[J]. 发光学报, 2019,40(12): 1554-1562 DOI: 10.3788/fgxb20194012.1554.
ZENG Hui-hui, XIAO Mei-zhen, YAN Gen-ping etc. Synthesis of Tin Oxide Quantum Dots-based Fluorescence Probe for AA Sensitive Detection[J]. Chinese Journal of Luminescence, 2019,40(12): 1554-1562 DOI: 10.3788/fgxb20194012.1554.
采用水热法合成了一种SnO
2
量子点,对其合成条件(如pH、温度、时间等)进行了优化,并使用红外光谱、X粉末衍射、粒度分析仪、荧光光谱仪等手段对量子点的物化和光学性能进行了表征。实验结果显示,合成的SnO
2
量子点分散均匀、粒径为5 nm左右;在310 nm波长光激发下,其最强发射峰位于415 nm,且表现出良好的光学稳定性。在Fe
3+
存在时,SnO
2
量子点的荧光被猝灭,而Fe
2+
对SnO
2
量子点的荧光没有影响,利用抗坏血酸(AA)的还原性,将Fe
3+
还原成Fe
2+
,猝灭的SnO
2
量子点荧光恢复,当AA浓度为500 molL
-1
时,SnO
2
荧光恢复率达到95.88%,其他氨基酸基本没有响应。基于此,构建了一种"off-on"荧光探针用于抗坏血酸灵敏检测。
Using the stannous chloride as raw materials
we synthesized a SnO
2
quantum dots by the means of hydrothermal method in this paper. The synthesis conditions such as pH
temperature
as well as time were optimized
and the FT-IR
XRD
Malvern Zetasizer Nano ZS90
FL-4600 fluorescence spectrophotometer
etc
. were utilized for the physicochemical and optical properties characterization of SnO
2
quantum dots. The experimental result shows that the size of SnO
2
quantum dots is about 5 nm
when excited with 310 nm light
the maximum emission peak of SnO
2
quantum dots locats at 415 nm. In the presence of Fe
3+
the fluorescence of SnO
2
quantum dots is quenched
while the Fe
2+
has no affection on the fluorescence of SnO
2
. Utilizing the reduction of ascorbic acid (AA)
the Fe
3+
ions can be reduced to Fe
2+
resulting in the fluorescence restore efficiently. When the concentration of AA is 500 molL
-1
the fluorescence recovery can reach to 95.88%. Based on this
we constructed a novel off-on fluorescence probe based on SnO
2
quantum dots for the sensitive detection of AA.
KAUR M,GUPTA S K,BETTY C A,et al.. Detection of reducing gases by SnO2 thin films:an impedance spectroscopy study[J]. Sens. Actuators B, 2005,107(1):360-365.
WANG Y L,JIANG X C,XIA Y N. A solution-phase,precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions[J]. J. Am. Chem. Soc., 2003,125(52):16176-16177.
VUONG D D,SAKAI G,SHIMANOE K,et al.. Hydrogen sulfide gas sensing properties of thin films derived from SnO2 sols different in grain size[J]. Sens. Actuators B, 2005,105(2):437-442.
CHIU H C,YEH C S. Hydrothermal synthesis of SnO2 nanoparticles and their gas-sensing of alcohol[J]. J. Phys. Chem. C, 2007,111(20):7256-7259.
MA X C,SONG H Y,GUAN C S. Interfacial oxidation-dehydration induced formation of porous SnO2 hollow nanospheres and their gas sensing properties[J]. Sens. Actuators B, 2013,177:196-204.
SUNG J H,LEE Y S,LIM J W,et al..Sensing characteristics of tin dioxide/gold sensor prepared by coprecipitation method[J]. Sens. Actuators B, 2000,66(1-3):149-152.
DONG H F,LEI J P,JU H X,et al.. Target-cell-specific delivery,imaging,and detection of intracellular micro RNA with a multifunctional SnO2 nanoprobe[J]. Angew. Chem. Int. Ed., 2012,51(19):4607-4612.
ZHANG Y L,LI L P,ZHENG J,et al.. Two-step grain-growth kinetics of sub-7 nm SnO2 nanocrystal under hydrothermal condition[J]. J. Phys. Chem. C, 2015,119(33):19505-19512.
陆梦晨. SPS制备SnO2和ZnS:Mn量子点玻璃及其光学性能的研究[D]. 上海:东华大学, 2016. LU M C. Synthesis of SnO2 and ZnS:Mn Quantum Dots Embedded in Silica Glass via SPS and Its Optical Properties Research[D]. Shanghai:Donghua University, 2016. (in Chinese)
SONG Z L,WEI Z R,WANG B C,et al.. Sensitive room-temperature H2S gas sensors employing SnO2quantum wire/reduced graphene oxide nanocomposites[J]. Chem. Mater., 2016,28(4):1205-1212.
LIN Y B,LIN Y,MENG Y M,et al.. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells[J]. Opt. Commun., 2015,346(1):64-68.
JIA J B,WANG B Q,WU A G,et al.. A method to construct a third-generation horseradish peroxidase biosensor:self-assembling gold nanoparticles to three-dimensional sol-gel network[J]. Anal. Chem., 2002,74(9):2217-2223.
YIN R C,MAO S Q,ZHAO B L,et al.. Ascorbic acid enhances tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals[J]. J. Am. Chem. Soc., 2013,135(28):10396-10403.
AZIZ N,FARAZ M,PANDEY R,et al.. Facile algae-derived route to biogenic silver nanoparticles:synthesis,antibacterial,and photocatalytic properties[J]. Langmuir, 2015,31(42):11605-11612.
SHAKYA R,NAVARRED A. Rapid screening of ascorbic acid,glycoalkaloids,and phenolics in potato using high-performance liquid chromatography[J]. J. Agric. Food Chem., 2006,54(15):5253-5260.
RONG M C,LIN L P,SONG X H,et al.. Fluorescence sensing of chromium (Ⅵ) and ascorbic acid using graphitic carbon nitride nanosheets as a fluorescent "switch"[J]. Biosens. Bioelectron., 2015,68:210-217.
WANG X X,WU P,HOU X D,et al.. An ascorbic acid sensor based on protein-modified Au nanoclusters[J]. Analyst, 2013,138(1):229-233.
CHEN Y J,YAN X P. Chemical redox modulation of the surface chemistry of CdTe quantum dots for probing ascorbic acid in biological fluids[J]. Small, 2009,5(17):2012-2018.
LI N,LI Y H,HAN Y Y,et al.. A highly selective and instantaneous nanoprobe for detection and imaging of ascorbic acid in living cells and in vivo[J]. Anal. Chem., 2014,86(8):3924-3930.
ZHAI W Y,WANG C X,YU P,et al.. Single-layer MnO2nanosheetssuppressed fluorescence of 7-hydroxycoumarin:mechanistic study and application for sensitive sensing of ascorbic acid in vivo[J]. Anal. Chem., 2014,86(24):12206-12213.
ZHU X H,ZHAO T B,NIE Z,et al.. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis[J]. Anal. Chem., 2015,87(16):8524-8530.
HORTIA N C,KAMATAGIA M D,PATILB N R,et al.. Photoluminescence properties of SnO2 nanoparticles:effect of solvents[J]. Optik, 2018,169:314-320.
PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Phys. Rev., 1939,56(10):978-982.
潘书生. 氮掺杂SnO2薄膜生长与物性研究[D]. 合肥:中国科学院合肥物质科学研究院, 2007. PAN S S. Growth and Physical Properties of Nitrogen-doped SnO2 Thin Films[D]. Hefei:Hefei Institute of Physical Science,Chinese Academy of Sciences, 2007. (in Chinese)
HU Y,HEOC H,KIM G,et al.. One-photon and two-photon sensing of biothiols using a bis-pyrene-Cu(Ⅱ) ensemble and its application to image GSH in the cells and tissues[J]. Anal. Chem., 2015,87(6):3308-3313.
PATHAKR K,HINGEV K,MAHESH K,et al.. Cd2+ complex of atriazole-based calixarene conjugate as a selective fluorescent chemosensorforcys[J]. Anal. Chem., 2012,84(15):6907-6913.
ZENG H H,WU H,PENG D,et al.. Fast and selective detection of Cr(Ⅲ) in environmental water samples using phosphovanadate Y(V0.2P0.8O4):Eu3+ fluorescence nanorods[J]. ACS Sens., 2018,3(8):1569-1575.
ANANTHANARAYANAN A,WANG X W,ROUTH P,et al.. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+sensing[J]. Adv. Funct. Mater., 2014,24(20):3021-3026.
MEI Q S,JIANG C L,GUAN G J,et al.. Fluorescent graphene oxide logic gates for discrimination of iron (3+) and iron (2+) in living cells by imaging[J]. Chem. Commun., 2012,48(60):7468-7470.
YANG F C,XIE Q J,ZHANG H Z,et al.. Simultaneous determination of ascorbic acid,uric acid,tryptophan and adenine using carbon-supported NiCoO2 nanoparticles[J]. Sens. Actuators B, 2015,210:232-240.
ZOU H L,LI B L,LUO H Q,et al.. A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid,dopamine and uric acid[J]. Sens. Actuators B, 2015,207:535-541.
ZHAO P,HE K Y,HAN Y T,et al.. Near-infrared dual-emission quantum dots-gold nanoclustersnanohybrid via Co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo[J]. Anal. Chem., 2015,87(19):9998-10005.
MENG H M,ZHANG X B,YANG C,et al.. Efficient two-photon fluorescence nanoprobe for turn-on detection and imaging of ascorbic acid in living cells and tissues[J]. Anal. Chem., 2016,88(11):6057-6063.
NIU W J,SHAN D,ZHU R H,et al.. Dumbbell-shaped carbon quantum dots/AuNCs nanohybrid as an efficient ratiometric fluorescent probe for sensing cadmium (Ⅱ) ions and L-ascorbic acid[J]. Carbon, 2016,96:1034-1042.
ROE J H,OESTERLING M J. The determination of dehydroascorbic acid and ascorbic acid in plant tissues by the 2,4-dinitrophenyl hydrazine method[J]. J. Biol. Chem.,1944,152(3):511-517.
0
浏览量
229
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构