浏览全部资源
扫码关注微信
1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所,吉林 长春,130033
2. 中国科学院大学 北京,100049
收稿日期:2019-05-17,
修回日期:2019-07-02,
网络出版日期:2019-06-13,
纸质出版日期:2019-11-05
移动端阅览
林杰, 刘星元, 曲松楠. 光泵浦低阈值聚合物激光器[J]. 发光学报, 2019,40(11): 1434-1438
LIN Jie, LIU Xing-yuan, QU Song-nan. Low Threshold Polymer Lasers Under Optical Pumping[J]. Chinese Journal of Luminescence, 2019,40(11): 1434-1438
林杰, 刘星元, 曲松楠. 光泵浦低阈值聚合物激光器[J]. 发光学报, 2019,40(11): 1434-1438 DOI: 10.3788/fgxb20194011.1434.
LIN Jie, LIU Xing-yuan, QU Song-nan. Low Threshold Polymer Lasers Under Optical Pumping[J]. Chinese Journal of Luminescence, 2019,40(11): 1434-1438 DOI: 10.3788/fgxb20194011.1434.
高阈值是实现直接电驱动聚合物激光器的主要障碍。本文采用性能优异的蓝光材料-聚芴(PFO)作为激光增益介质,根据腔量子电动力学原理,设计出结构合理的平面光学微腔,通过减薄聚合物层厚度的方法进一步降低有源层材料自吸收;采用两种不同材料体系的分布布拉格反射镜(DBR)构筑光学微腔,减小顶部DBR制备过程中引入的额外光损耗,获得了低损耗、高
Q
值的光学谐振腔;有效调控PFO的自发发射和受激发射特性,最终实现了峰值波长位于443 nm、阈值仅为30 mW/cm
2
的光泵浦低阈值聚合物激光器。
High threshold is the main obstacle to achieving direct electrically pumped polymer lasers. In this paper
high-performance blue light material
polyfluorene(PFO) is used as a laser gain medium. A planar optical microcavity with appropriate structure is designed based on cavity quantum electrodynamics principle. The self-absorption of active layer material is further reduced by lowing the thickness of polymer layer. Optical microcavity is constructed by DBRs with two different material system. The extra optical loss is cut down in the preparation process of top DBR
and the optical resonator with low loss and high
Q
value is finally obtained. An optically pumped low threshold polymer laser with a peak wavelength of 443 nm and a threshold of only 30 mW/cm
2
is realized by effectively controlling the spontaneous emission and stimulated emission characteristics of PFO.
LUPTON J M. Over the rainbow[J]. Nature, 2008,453(7194):459-460.
SAMUEL I D W. Laser physics:fantastic plastic[J]. Nature, 2004,429(6993):709-710.
SAMUEL I D W,NAMDAS E B,TURNBULL G A. How to recognize lasing[J]. Nat. Photon., 2009,3(10):546-549.
TESSLER N,DENTON G J,FRIEND R H. Lasing from conjugated-polymer microcavities[J]. Nature, 1996,382(6593):695-697.
KOSCHORRECK M,GEHLHAAR R,LYSSENKO V G,et al.. Dynamics of a high-Q vertical-cavity organic laser[J]. Appl. Phys. Lett., 2005,87(18):181108-1-4.
GATHER M C,YUN S H. Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers[J]. Nat. Commun., 2014,5:5722-1-18.
KIM D H,D'ALO A,CHEN X K,et al.. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter[J]. Nat. Photon., 2018,12(2):98-104.
JIANG Y,LV P,PAN J Q,et al.. Low-threshold organic semiconductor lasers with the aid of phosphorescent Ir(Ⅲ) complexes as triplet sensitizers[J]. Adv. Funct. Mater., 2019,29(19):1806719.
LIU X Y,LI H B,SONG C Y,et al.. Microcavity organic laser device under electrical pumping[J]. Opt. Lett., 2009,34(4):503-505.
张镭,李颜涛,林杰,等. 基于Alq:DCJTI薄膜的光泵浦650 nm微腔激光[J]. 发光学报, 2015,36(9):1059-1063. ZHANG L,LI Y T,LIN J,et al.. Microcavity lasing at 650 nm from Alq:DCJTI film under optical pumping[J]. Chin. J. Lumin., 2015,36(9):1059-1063. (in Chinese)
LIN J,HU Y S,LV Y,et al.. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping[J]. Sci. Bull., 2017,62(24):1637-1638.
林杰,曲松楠,褚明辉,等. 全介质镜微腔的结构设计与发光特性的模拟[J]. 发光学报, 2013,34(3):329-333. LIN J,QU S N,CHU M H,et al.. Simulation of luminescence properties and structure design of microcavity based on two dielectric mirrors[J]. Chin. J. Lumin., 2013,34(3):329-333. (in Chinese)
KUEHNE A J C,GATHER M V. Organic lasers:recent developments on materials,device geometries,and fabrication techniques[J]. Chem. Rev., 2016,116(21):12823-12864.
0
浏览量
162
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构