浏览全部资源
扫码关注微信
1. 长春理工大学 理学院,吉林 长春,130021
2. 长春理工大学 外国语学院,吉林 长春,130022
3. 吉林省长光瑞思激光技术有限公司, 吉林 长春 130033
收稿日期:2019-06-02,
修回日期:2019-07-02,
网络出版日期:2019-07-09,
纸质出版日期:2019-11-05
移动端阅览
单肖宁, 张晶, 韩金樑等. 基于周期性电极的窄条单纵模674 nm半导体激光器[J]. 发光学报, 2019,40(11): 1428-1433
SHAN Xiao-ning, ZHANG Jing, HAN Jin-liang etc. Narrow-strip Single-longitudinal-mode 674 nm Laser Based on Periodic Anodes[J]. Chinese Journal of Luminescence, 2019,40(11): 1428-1433
单肖宁, 张晶, 韩金樑等. 基于周期性电极的窄条单纵模674 nm半导体激光器[J]. 发光学报, 2019,40(11): 1428-1433 DOI: 10.3788/fgxb20194011.1428.
SHAN Xiao-ning, ZHANG Jing, HAN Jin-liang etc. Narrow-strip Single-longitudinal-mode 674 nm Laser Based on Periodic Anodes[J]. Chinese Journal of Luminescence, 2019,40(11): 1428-1433 DOI: 10.3788/fgxb20194011.1428.
报道了中心波长在674 nm的周期性电极窄条形单纵模半导体激光器。其制作工艺简单,仅使用i线光刻技术和普通的刻蚀技术制作的周期性沟槽与周期性电极结构即保证了器件工作在增益耦合机制下,进而实现单纵模激光输出。当注入电流为85 mA、测试温度18℃时,激光器的输出功率为2.603 mW。当注入电流为60 mA时,在不同测试温度下,器件均保持单纵模工作。当室温为16℃时,测得器件的光谱线宽可达到2.42 pm,边模抑制比为47 dB。由于该器件制作成本低,性能优良,可广泛应用于实际生产中。
A narrow-strip single-longitudinal-mode semiconductor laser based on periodic anodes with a central wavelength of approximately 674 nm is demonstrated. The manufacturing process is simple
the periodic trenches and periodic electrode structures fabricated only using i-line lithography and conventional etching techniques
which ensures that the device operates under a gain coupling mechanism
thereby enabling the output of a single longitudinal mode laser. When the injection current is 85 mA and the test temperature is 18℃
the output power of the laser is 2.603 mW. When the injection current is 60 mA
the device maintains a single longitudinal mode operation at different test temperatures. When the room temperature is 16℃
the measured spectral linewidth of the device can reach 2.42 pm
and the side mode suppression ratio is 47 dB. Owing to the low-cost fabrication methods and good performances
our single-longitudinal-mode devices can be used for widespread practical applications.
PASCHOTTA R,NILSSON J,TROPPER A C,et al.. Ytterbium-doped fiber amplifiers[J]. IEEE J. Quant. Electron., 1997,33(7):1049-1056.
JEON H,VERDIELL J M,ZIARI M,et al.. High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1550-nm applications[J]. IEEE J. Selected Top. Quant. Electron., 1998,3(6):1344-1350.
BURROWS E C,LIOU K Y. High resolution laser LIDAR utilising two-section distributed feedback semiconductor laser as a coherent source[J]. Electron. Lett., 1990,26(9):577-579.
TILMA B W,MANGOLD M,ZAUGG C A,et al.. Recent advances in ultrafast semiconductor disk lasers[J]. Light: Sci Appl., 2015,4:e310.
CAPASSO F,PAIELLA R,MARTINI R,et al.. Quantum cascade lasers:ultrahigh-speed operation,optical wireless communication,narrow linewidth,and far-infrared emission[J]. IEEE J. Quant. Electron., 2002,38(6):511-532.
OHNO T,TAKIGUCHI M,WAKABAYASHI K,et al.. Characteristics of red-emitting broad area stripe laser diodes with zinc diffused window structures[C]. Proceedings of SPIE 7583,High-power Diode Laser Technology and Applications ⅤⅢ,San Francisco,California,United States, 2010:75830W-1-11.
MITSUYAMA H,MOTODA T,NISHIDA T,et al.. Reliability study on high-power 638 nm broad stripe laser diode[J]. Opt. Rev., 2014,21(1):43-47.
FRICKE J,BROX O,WENZEL H,et al.. Red-emitting distributed-feedback ridge-waveguide laser based on high-order surface grating[J]. Electron. Lett., 2018,54(9):582-583.
COLDREN L A,CORZINE S W,MASHANOVITCH M L. Diode Lasers and Photonic Integrated Circuits [M]. 2nd ed. Hoboken,NJ:Wiley, 2012:113-121.
SHI Y C,LI S M,GUO R J,et al.. A novel concavely apodized DFB semiconductor laser using common holographic exposure[J]. Opt. Express, 2013,21(13):16022-16028.
LI J S,WANG H,CHEN X F,et al.. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology[J]. Opt. Express, 2009,17(7):5240-5245.
SARGENT M I,SWANTNER W,THOMAS J. Theory of a distributed feedback laser[J]. IEEE J. Quant. Electron., 1980,16(4):465-472.
KANSKAR M,HE Y,CAI J,et al.. 53% wallplug efficiency 975 nm distributed feedback broad area laser[J]. Electron. Lett., 2006,42(25):1455-1457.
DECKER J,CRUMP P,FRICKE J,et al.. Narrow stripe broad area lasers with high order distributed feedback surface gratings[J]. IEEE Photon. Technol. Lett., 2014,26(8):829-832.
LUO Y,NAKANO Y,TADA K,et al.. Purely gain-coupled distributed feedback semiconductor lasers[J]. Appl. Phys. Lett., 1990,56(17):1620-1622.
LIU L,QU H W,WANG Y F,et al.. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Opt. Lett., 2014,39(11):3231-3234.
VU T N,KLEHR A,SUMPF B,et al.. Tunable 975 nm nanosecond diode-laser-based master-oscillator power-amplifier system with 16.3 W peak power and narrow spectral linewidth below 10 pm[J]. Opt. Lett., 2014,39(17):5138-5141.
0
浏览量
241
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构