浏览全部资源
扫码关注微信
1. 常州工业职业技术学院 信息工程与技术学院,江苏 常州,213164
2. 江苏大学 计算机科学与通信工程学院,江苏 镇江,212013
[ "朱宇光(1966-),男,江苏常州人,硕士,教授,2006年于西安理工大学获得硕士学位,主要从事光电子应用技术及物联网应用技术方面的研究。E-mail:zyg_victor@sina.com" ]
[ "方云团(1965-),男,安徽桐城人,硕士,教授,2000年于南京师范大学获得硕士学位,主要从事光学和光通信的研究。E-mail:fang_yt1965@sina.com" ]
收稿日期:2019-06-17,
修回日期:2019-08-11,
纸质出版日期:2019-11-05
移动端阅览
朱宇光, 方云团,. 基于石墨烯和一维光子晶体复合结构实现可见光全波段吸收器[J]. 发光学报, 2019,40(11): 1394-1400
ZHU Yu-guang, FANG Yun-tuan,. Design of Absorber at Visible Frequencies Based on Compound Structure of One-dimensional Photonic Crystal and Graphene[J]. Chinese Journal of Luminescence, 2019,40(11): 1394-1400
朱宇光, 方云团,. 基于石墨烯和一维光子晶体复合结构实现可见光全波段吸收器[J]. 发光学报, 2019,40(11): 1394-1400 DOI: 10.3788/fgxb20194011.1394.
ZHU Yu-guang, FANG Yun-tuan,. Design of Absorber at Visible Frequencies Based on Compound Structure of One-dimensional Photonic Crystal and Graphene[J]. Chinese Journal of Luminescence, 2019,40(11): 1394-1400 DOI: 10.3788/fgxb20194011.1394.
为了实现可见光全波段光波吸收器,设计了石墨烯和一维光子晶体的复合结构。用修正的传输矩阵法研究它的传输特性。通过参数的优化和设计级联结构,在正入射条件下该结构在整个可见光波段除两个个别频率吸收率为0.7和0.66外,其余吸收率均达到0.88。结构的吸收还具有对入射角度不敏感的特征。
In order to achieve an optical absorber working in the whole visible frequencies
we design a one-dimensional photonic crystal embedded by graphene layers. We study its propagation characteristic through the modified transfer matrix method. Through the parameter optimization and cascade structures
the structure can achieve the absorption rate 0.88 in the whole visible frequencies except for two special frequencies on normal incidence. The absorber is also found to be insensitive to the incidence angle.
ATWATER H A,POLMAN A. Plasmonics for improved photovoltaic devices[J]. Nat. Mater., 2010,9(3):205-213.
SAI H,YUGAMI H,KANAMORI Y,et al.. Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion[J]. Sol. Energy Mater. Sol. Cells, 2003,79(1):35-49.
WANG L P,ZHANG Z M. Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics[J]. Appl. Phys. Lett., 2012,100(6):063902-1-3.
LIU N,MESCH M,WEISS T,et al.. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Lett., 2010,10(7):2342-2348.
黎永前,苏磊,王斌斌,等. 红外波段十字阵列光吸收材料光学特性研究[J]. 光学学报, 2014,34(1):0123002-1-7. LI Y Q,SU L,WANG B B,et al.. Optical properties of cross-shaped array optical absorber in the infrared region[J]. Acta Opt. Sinica, 2014,34(1):0123002-1-7. (in Chinese)
LEE B J,ZHANG Z M. Design and fabrication of planar multilayer structures with coherent thermal emission characteristics[J]. J. Appl. Phys., 2006,100(6):063529-1-10.
NARAYANASWAMY A,CHEN G. Thermal emission control with one-dimensional metallodielectric photonic crystals[J]. Phys. Rev. B, 2004,70(12):125101-1-4.
MATTIUCCI N,BLOEMER M J,AKZBEK N,et al.. Impedance matched thin metamaterials make metals absorbing[J]. Sci. Rep., 2013,3(11):3203-1-11.
陆苏青,巢小刚,陈宪锋,等. 金属-光子晶体-金属结构中的双波TE偏振完美吸收[J]. 光学学报, 2015,35(1):0116003-1-6. LU S Q,CHAO X G,CHEN X F,et al.. TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure[J]. Acta Opt. Sinica, 2015,35(1):0116003-1-6. (in Chinese)
ZHAO D,MENG L J,GONG H M,et al.. Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina[J]. Appl. Phys. Lett., 2014,104(22):221107-1-4.
GRIGORENKO A N,POLINI M,NOVOSELOV K S. Graphene plasmonics[J]. Nat. Photon., 2012,6(11):749-758.
LIU M,YIN X B,ULIN-AVILA E,et al.. A graphene-based broadband optical modulator[J]. Nature, 2011,474(7349):64-67.
LIU J T,LIU N H,LI J,et al.. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Appl. Phys. Lett., 2012,101(5):052104-1-3.
XIANG Y J,DAI X Y,GUO J,et al.. Critical coupling with graphene-based hyperbolic metamaterials[J]. Sci. Rep., 2014,4:5483-1-7.
NEFEDOV I S,VALAGIANNOPOULOS C A,MELNIKOV L A. Perfect absorption in graphene multilayers[J]. J. Opt., 2013,15(11):114003-1-6.
YI Z,LIANG C P,CHEN X F,et al.. Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application[J]. Micromachines, 2019,10(7):443-1-11.
CEN C L,ZHANG Y B,LIANG C P,et al.. Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays[J]. Phys. Lett. A, 2019,383(24):3030-3035.
蔡强,叶润武,方云团. 石墨烯超材料复合结构的宽带吸收[J]. 中国激光, 2017,44(10):1003005-1-7. CAI Q,YE R W,FANG Y T. Broadband absorption based on graphene metamaterial composite structure[J]. Chin. J. Lasers, 2017,44(10):1003005-1-7. (in Chinese)
CHEN P Y,AL A. Atomically thin surface cloak using graphene monolayers[J]. ACS Nano, 2011,5(7):5855-5863.
HANSON G W. Dyadic Green's functions and guided surface waves for a surface conductivity model of graphene[J]. J. Appl. Phys., 2007,103(6):064302-1-8.
邓新华,刘江涛,袁吉仁,等. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用[J]. 物理学报, 2015,64(5):057801-1-5. DENG X H,LIU J T,YUAN J R,et al.. A new characteristics matrix method based on conductivity and its application in the optical properties of graphene in THz frequency range[J]. Acta Phys. Sinica, 2015,64(5):057801-1-5. (in Chinese)
0
浏览量
228
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构