浏览全部资源
扫码关注微信
1. 北京邮电大学电子工程学院 安全生产智能监控北京市重点实验室, 北京 100876
2. 中国科学院 理化技术研究所 北京,100080
收稿日期:2019-06-02,
修回日期:2019-07-07,
网络出版日期:2019-06-13,
纸质出版日期:2019-11-05
移动端阅览
陈雪桥, 王小卉, 于印霄等. 一种金纳米球复合稀土Eu<sup>3+</sup>功能纳米材料的制备及光热监测应用[J]. 发光学报, 2019,40(11): 1380-1385
CHEN Xue-qiao, WANG Xiao-hui, YU Yin-xiao etc. Preparation of Gold Nanospheres-attached Eu(TTA)<sub>3</sub>(TPPO)<sub>2</sub>-loaded Functional Nanomaterials for Photothermal Monitoring[J]. Chinese Journal of Luminescence, 2019,40(11): 1380-1385
陈雪桥, 王小卉, 于印霄等. 一种金纳米球复合稀土Eu<sup>3+</sup>功能纳米材料的制备及光热监测应用[J]. 发光学报, 2019,40(11): 1380-1385 DOI: 10.3788/fgxb20194011.1380.
CHEN Xue-qiao, WANG Xiao-hui, YU Yin-xiao etc. Preparation of Gold Nanospheres-attached Eu(TTA)<sub>3</sub>(TPPO)<sub>2</sub>-loaded Functional Nanomaterials for Photothermal Monitoring[J]. Chinese Journal of Luminescence, 2019,40(11): 1380-1385 DOI: 10.3788/fgxb20194011.1380.
光热治疗基于光热药剂在激光照射下产生热量,进而高温杀死肿瘤细胞,因而实时监测光热过程中微观温度变化对于优化治疗效果具有十分重要的作用。稀土Eu
3+
配合物的发光具有线谱、长荧光寿命以及对温度高度敏感的特点,利用Eu
3+
配合物的温敏特性可检测光热过程中的温度变化,整合温度监测功能和光热特性的纳米体系在光热治疗领域具有很好的应用前景。本文制备了一种内部封装温度敏感探针Eu
3+
配合物且表面复合金纳米球的功能纳米颗粒,将该功能纳米颗粒分散液置于不同的温度环境中,发现其荧光性能对温度具有高的响应灵敏度,即Eu
3+
的特征发射峰(615 nm)强度随温度升高降低52.7%,表明该稀土荧光温度纳米传感器具有高的温度敏感性。在激光辐照下,功能纳米颗粒可以产生良好的光热现象,基于自身的温敏特性可实时对光热特性进行温度监控。
Photothermal therapy is based on the heat generated by photothermal agents under laser irradiation
and then kills tumor cells at high temperature. Real-time monitoring of microscopic temperature changes in photothermal process plays a very important role in optimizing the therapeutic effect. Europium(Ⅲ) chelates display line spectrum
long fluorescence lifetime and a highly temperature-dependent emission
which can be used to detect the temperature of photothermal process. The nanosystem
integrating temperature monitoring and the photothermal property
is promissing in the field of photothermal therapy. Herein
we designed a gold nanospheres-attached Eu(TTA)
3
-(TPPO)
2
-loaded functional nanomaterials. The functional nanoparticle displays good temperature-dependent fluorescence performance. The emission peak(615 nm) of Eu
3+
decreases up to 52.7% from 35℃ to 65℃
indicating that the nanoparticles has high temperature sensitivity. Under laser irradiation
functional nanoparticles can produce photothermal effects
and real-time temperature monitoring of photothermal process can be performed based on its own temperature sensitivity.
UCHIYAMA S,GOTA C,TSUJI T,et al.. Intracellular temperature measurements with fluorescent polymeric thermometers[J]. Chem. Commun., 2017,53(80):10976-10992.
CHILDS P R N,GREENWOOD J R,LONG C A. Review of temperature measurement[J]. Rew. Sci. Instrum., 2000,71(8):2959-2978.
ZENG J F,YANG W D,SHI D J,et al.. Porphyrin derivative conjugated with gold nanoparticles for dual-modality photodynamic and photothermal therapies in vitro [J]. ACS Biomater. Sci. Eng., 2018,4(3):963-972.
WANG X H,PENG H S,YANG W,et al.. Preparation of gold nanoparticles-attached phosphorescent nanospheres for synergistic photothermal and photodynamic therapy[J]. Nanosci. Nanotechnol. Lett., 2017,9(3):227-232.
SHINOHARA K. Thermal ablation of prostate diseases:advantages and limitations[J]. Int. J. Hyperther., 2004,20(7):679-697.
JANSEN M C,VANDUIJNHOVEN F H,VAN HILLEGERSBERG R,et al.. Adverse effects of radiofrequency ablation of liver tumours in the Netherlands[J]. Br. J. Surg., 2005,92(10):1248-1254.
TANG J H,SUN Y,GONG Z L,et al.. Temperature-responsive fluorescent organoplatinum(Ⅱ) metallacycles[J]. J. Am. Chem. Soc., 2018,140(24):7723-7729.
WANG X D,MEIER R J,SCHFERLING M,et al.. Two-photon excitation temperature nanosensors based on a conjugated fluorescent polymer doped with a europium probe[J]. Adv. Opt. Mater., 2016,4(11):1854-1859.
CHEN B T,DONG B,WANG J,et al.. Amphiphilic silane modified NaYF4:Yb,Er loaded with Eu(TTA)3(TPPO)2 nanoparticles and their multi-functions:dual mode temperature sensing and cell imaging[J]. Nanoscale, 2013,5(18):8541-8549.
DING H,YANG L,PENG H S,et al.. Intracellular temperature imaging in gold nanorod-assisted photothermal therapy with luminescent Eu(Ⅲ) chelate nanoparticles[J]. J. Nanosci. Nanotechnol., 2016,16(4):3877-3882.
ZHU X J,FENG W,CHANG J,et al.. Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature[J]. Nat. Commun., 2016,7:10437-1-10.
SAVCHUK O A,CARVAJAL J J,BRITES C D S,et al.. Upconversion thermometry:a new tool to measure the thermal resistance of nanoparticles[J]. Nanoscale, 2018,10(14):6602-6610.
SUO H,ZHAO X Q,ZHANG Z Y,et al.. Up-converting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S hollow nanoplatforms for self-monitored photothermal ablation[J]. ACS Appl. Mater. Interfaces, 2018,10(46):39912-39920.
ONDRUS V,MEIER R J,KLEIN C,et al.. Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing[J]. Sens. Actuators A, 2015,233:434-441.
WANG X H,PENG H S,DING H,et al.. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing[J]. J. Mater. Chem., 2012,22(31):16066-16071.
MANSEKI M,HASEGAWA Y,WADA Y,et al.. Photosensitized luminescence of thermostable polynuclear Eu(Ⅲ) complexes[J]. J. Lumin., 2005,111(3):183-189.
QIAN G D,YANG Z,WANG M Q. Time-resolved spectroscopic study of Eu(TTA)3(TPPO)2 chelate in situ synthesized in vinyltriethoxysilane-derived sol-gel-processed glass[J]. J. Lumin., 2002,96(2-4):211-218.
WANG Y,MA D Y,JIANG Z H,et al.. Synthesis,characterization and luminescent properties of a rare earth complex Eu(TTA)3(TPPO)2[J]. Adv. Mater Res., 2012,512-515:1767-1770.
PENG H S,STICH M I J,YU J B,et al.. Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range[J]. Adv. Mater., 2010,22(6):716-719.
LI Z Q,ZHANG Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence[J]. Nanotechnology, 2008,19(34):345606-1-5.
屈晓超,梁佳明,姚翠萍,等. 金纳米微粒的光学性质及其在生物成像和光热疗法中的应用[J]. 中国激光, 2007,34(11):1459-1465. QU X C,LIANG J M,YAO C P,et al.. Optical properties of gold nanoparticle and its application in biological imaging and photothermal therapy[J]. Chin. J. Lasers, 2007,34(11):1459-1465. (in Chinese)
0
浏览量
93
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构