浏览全部资源
扫码关注微信
1. 山东大学(威海) 空间科学与物理学院, 山东 威海 264209
2. 山东大学 化学与化学工程学院,山东 济南,250100
3. 山东大学(威海) 机电与信息工程学院,山东 威海,264209
4. 中国科学院 上海技术物理研究所 上海,200083
5. 济南市半导体元件实验所, 山东 济南 250014
收稿日期:2019-06-05,
修回日期:2019-07-29,
网络出版日期:2019-08-19,
纸质出版日期:2019-11-05
移动端阅览
郑卫民, 黄海北, 李素梅等. δ-掺杂Be受主GaAs/AlAs多量子阱的空穴共振隧穿[J]. 发光学报, 2019,40(11): 1373-1379
ZHENG Wei-min, HUANG Hai-bei, LI Su-mei etc. Resonant Tunneling of Holes Through δ-doped Be Acceptor GaAs/AlAs Multiple Quantum Wells[J]. Chinese Journal of Luminescence, 2019,40(11): 1373-1379
郑卫民, 黄海北, 李素梅等. δ-掺杂Be受主GaAs/AlAs多量子阱的空穴共振隧穿[J]. 发光学报, 2019,40(11): 1373-1379 DOI: 10.3788/fgxb20194011.1373.
ZHENG Wei-min, HUANG Hai-bei, LI Su-mei etc. Resonant Tunneling of Holes Through δ-doped Be Acceptor GaAs/AlAs Multiple Quantum Wells[J]. Chinese Journal of Luminescence, 2019,40(11): 1373-1379 DOI: 10.3788/fgxb20194011.1373.
三个具有不同量子阱宽度的GaAs/AlAs多量子阱结构样品通过分子束外延生长设备生长在半绝缘的(100) p-型GaAs衬底上,并且在量子阱层结构的生长过程中,在GaAs阱层中央进行了Be受主的-掺杂。基于这3个结构样品,通过光刻技术和半导体加工工艺制备了相应的两端器件。在4~200 K的温度范围内,我们分别测量了器件的电流-电压特征曲线,清楚地观察到了重、轻空穴通过-掺杂Be受主GaAs/AlAs多量子阱结构的共振隧穿现象。发现随着GaAs量子阱层宽的逐渐减小,轻空穴的共振隧穿峰向着高电压方向移动,这个结果和通过AlAs/GaAs/AlAs双势垒结构模型计算的结果是一致的。然而,随着测量温度的进一步升高,两个轻空穴共振峰都朝着低电压的方向移动,并且在150 K温度下,其中一个共振遂穿峰表现为一种振动模式。
Three samples of GaAs/AlAs multiple quantum wells with different quantum-well widths are grown on semi-insulating (100) p-type GaAs substrates by the molecular beam epitaxy with Be acceptors -doped at the center of GaAs well layers. Three corresponding two-terminal devices are fabricated by photolithographic and semiconductor manufacturing technologies based on these samples. The device current-voltage characteristics are measured at temperatures in a range of 4-200 K. The resonant tunneling of heavy- and light-holes through Be -doped GaAs/AlAs multiple quantum wells are clearly observed. It is found that the position of resonant tunneling for light-heavy holes shifts to higher voltage with decreasing quantum-well sizes
which is in good agreement with the results calculated by the AlAs/GaAs/AlAs double-barrier theoretical model. However
as the measured temperatures increase
two peaks of resonant tunneling of light-holes move toward lower voltage
while one of the resonant peaks behaves as an oscillating mode at 150 K.
EISELE H,LI L H,LINFIELD E H. High-performance GaAs/AlAs superlattice electronic devices in oscillators at frequencies 100-320 GHz[J]. Appl. Phys. Lett., 2018,112(17):172103-1-5.
LI Y,ZHU Y H,HUANG J,et al.. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes[J]. J. Appl. Phys., 2017,121(5):053105-1-5.
DRICHKO I L,SMIRNOV I Y,NESTOKLON M O,et al.. Intersubband scattering in n-GaAs/AlGaAs wide quantum wells[J]. Phys. Rev. B, 2018,97(7):075427-1-5.
TSU R,ESAKI L. Tunneling in a finite superlattice[J]. Appl. Phys. Lett., 1973,22(11):562-564.
SOLLNERT C L G,GOODHUE W D,TANNENWALD P E,et al.. Resonant tunneling through quantum wells at frequencies up to 2.5 THz[J]. Appl. Phys. Lett., 1983,43(6):588-590.
MENDEZ E E,WANG W I,RICCO B,et al.. Resonant tunneling of holes in AlAs-GaAs-AlAs heterostructures[J]. Appl. Phys. Lett., 1985,47(4):415-416.
FERREIRA R,BASTARD G. Assisted hole tunnelling in double quantum well structures[J]. Surf. Sci., 1990,229(1-3):165-168.
LI S M,ZHENG W M,WU A L,et al.. Terahertz electroluminescence from Be -doped GaAs/AlAs quantum well[J]. Appl. Phys. Lett., 2010,97(2):023507-1-3.
HOOK T B,MA T P. Perimeter-related current in high-field tunneling into SiO2[J]. Appl. Phys. Lett., 1985,47(4):417-419.
VOJAK B A,KIRCHOEFER S W,HOLONYAK JR N,et al.. Low-temperature operation of multiple quantum-well Alx Ga1-xAs-GaAs p-n heterostructure lasers grown by metalorganic chemical vapor deposition[J]. J. Appl. Phys., 1979,50(9):5830-5834.
ANDO Y,ITOH T. Calculation of transmission tunneling current across arbitrary potential barriers[J]. J. Appl. Phys., 1987,61(4):1497-1502.
BRENNAN K F,SUMMERS C J. Theory of resonant tunneling in a variably spaced multiquantum well structure:an Airy function approach[J]. J. Appl. Phys., 1987,61(2):614-623.
VASSELL M O,LEE J,LOCKWOOD H F. Multibarrier tunneling in Ga1-xAlxAs/GaAs heterostructures[J]. J. Appl. Phys., 1983,54(9):5206-5213.
MASSELINK W T,CHANG Y C,MORKO H. Acceptor spectra of Alx Ga1-xAs-GaAs quantum wells in external fields:electric,magnetic,and uniaxial stress[J]. Phys. Rev. B, 1985,32(8):5190-5201.
BROIDO D A,SHAM L J. Effective masses of holes at GaAs-AlGaAs heterojunctions[J]. Phys. Rev. B, 1985,31(2):888-892.
ANDREANI L C,PASQUARELLO A,BASSANI F. Hole subbands in strained GaAs-Ga1-xAlxAs quantum wells:exact solution of the effective-mass equation[J]. Phys. Rev. B, 1987,36(11):5887-5894.
WESSEL R,ALTARELLI M. Resonant tunneling of holes in double-barrier heterostructures in the envelope-function approximation[J]. Phys. Rev. B, 1989,39(17):12802-12807.
XIA J B. Theory of hole resonant tunneling in quantum-well structures[J]. Phys. Rev. B, 1988,38(12):8365-8370.
ZHENG W M,HALSALL M P,HARMER P,et al.. Acceptor binding energy in -doped GaAs/AlAs multiple-quantum wells[J]. J. Appl. Phys., 2002,92(10):6039-6042.
SKOLNICK M S,JAIN A K,STRADLING R A,et al.. An investigation of the anisotropy of the valence band of GaAs by cyclotron resonance[J]. J. Phys. C:Solid State Phys., 1976,9(14):2809-2822.
MASSELINK W T,CHANG Y C,MORKO H. Binding energies of acceptors in GaAs-AlxGa1-xAs quantum wells[J]. Phys. Rev. B, 1983,28(8):7373-7376.
ZHENG W M,WANG A F,LU Y B,et al.. Internal transitions of acceptors confined in delta-doped GaAs/AlAs multiple quantum wells[J]. Semicond. Sci. Technol., 2007,22(2):74-79.
0
浏览量
39
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构