浏览全部资源
扫码关注微信
长春工业大学 化学工程学院,吉林 长春,130012
收稿日期:2019-05-23,
修回日期:2019-07-05,
网络出版日期:2019-06-13,
纸质出版日期:2019-10-05
移动端阅览
张梁, 孙强, 朱阳阳等. PbSe量子点调控的聚合物太阳能电池性能[J]. 发光学报, 2019,40(10): 1267-1273
ZHANG Liang, SUN Qiang, ZHU Yang-yang etc. Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(10): 1267-1273
张梁, 孙强, 朱阳阳等. PbSe量子点调控的聚合物太阳能电池性能[J]. 发光学报, 2019,40(10): 1267-1273 DOI: 10.3788/fgxb20194010.1267.
ZHANG Liang, SUN Qiang, ZHU Yang-yang etc. Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(10): 1267-1273 DOI: 10.3788/fgxb20194010.1267.
为提升聚合物太阳能电池的光电转换效率,在有源层中掺杂PbSe量子点,研究对电池性能的影响。首先采用热化学法制备PbSe量子点,通过改变油酸的添加量及反应时间,调控PbSe量子点的尺寸及结晶性。通过透射电子显微镜和X射线衍射,对量子点进行表征,确定最佳反应条件。然后将不同质量分数的PbSe量子点掺杂至结构为ITO/ZnO/PTB7:PC
71
BM/MoO
3
/Ag的聚合物太阳能电池中,通过
J-V
性能测试和紫外吸收光谱测试,分析了PbSe量子点对电池的影响机理。实验结果表明,当PbO与OA的量比为1:2、反应时间为3 min时,可得到尺寸均匀分布在3~7 nm之间、结晶性较好的量子点,掺杂量子点质量分数为3%时,短路电流密度提升了8.37%,光电转换效率提升了37.41%,有效提升了聚合物太阳能电池的性能。
In order to improve the photoelectric conversion efficiency of polymer solar cells
PbSe quantum dots were doped in the active layer and the effect of the material on the cells was studied. Firstly
PbSe quantum dots were prepared by thermochemical method. The size and crystallinity of PbSe quantum dots were controlled by changing the amount of oleic acid and reaction time. Quantum dots were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD)
and the optimum reaction conditions were determined. Then PbSe quantum dots with different mass fractions were doped into polymer solar cells with structure of ITO/ZnO/PTB7:PC
71
BM/MoO
3
/Ag. Through
J-V
performance test and ultraviolet absorption spectrum test
the influence mechanism of PbSe quantum dots on solar cells was analyzed. The experimental results show that when the molar ratio of PbO to OA is 1:2 and the reaction time is 3 min
the quantum dots with uniform size distribution between 3 and 7 nm and good crystallinity can be obtained. The short circuit current density and photoelectric conversion efficiency can be increased by 8.37% and 37.41% by doping 3% into polymer solar cells and the performance of polymer solar cells has been improved effectively.
SINGH R P,KUSHWAHA O S. Polymer solar cells:an overview[J]. Macromol. Symp., 2013,327(1):128-149.
LI G,ZHU R,YANG Y. Polymer solar cells[J]. Nat. Photon., 2012,6(3):153-161.
YUAN J,ZHANG Y Q,ZHOU L Y,et al.. Fused benzothiadiazole:a building block for n-type organic acceptor to achieve high-performance organic solar cells[J]. Adv. Mater., 2019,31(17):1807577-1-8.
YIN Y L,ZHANG Y,ZHAO L C. Indaceno-based conjugated polymers for polymer solar cells[J]. Macromol. Rapid Commun., 2018,39(14):1700697.
BEILEY Z M,HOKE E T,NORIEGA R,et al.. Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells[J]. Adv. Energy Mater., 2011,1(5):954-962.
KO S J,HEO J,LEE B H,et al.. Morphological and optical engineering for high-performance polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2019,11(5):4705-4711.
王丽娟,张伟,秦海涛,等. 溶液加工条件对聚合物体相异质结太阳能电池性能的影响[J]. 液晶与显示, 2013,28(4):521-526. WANG L J,ZHANG W,QIN H T,et al.. Influence of solution-processed conditions on polymer bulk heterojunction solar cell performance[J]. Chin. J. Liq. Crys. Disp., 2013,28(4):521-526. (in Chinese)
赵宇涵,李雪,关海艳,等. 快速热退火处理ZnO电子传输层对聚合物太阳能电池性能的改善[J]. 发光学报, 2017,38(8):1063-1068. ZHAO Y H,LI X,GUAN H Y,et al.. Enhanced performance of polymer solar cells using rapid thermal annealing treated ZnO electron transporting layer[J]. Chin. J. Lumin., 2017,38(8):1063-1068. (in Chinese)
LI W,LIU Z Y,YANG R J,et al.. High performance polymer solar cells employing rhodamines as cathode interfacial layers[J]. ACS Appl. Mater. Interfaces, 2017,9(32):27083-27089.
DANG D F,YU D H,WANG E G. Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells[J]. Adv. Mater., 2019,31(22):1807019-1-33.
KUBO R. Electronic properties of metallic fine particle. I[J]. J. Phys. Soc. Japan, 1962,17(6):975-986.
NOZIK A J. Nanoscience and nanostructures for photovoltaics and solar fuels[J]. Nano Lett., 2010,10(8):2735-2741.
SUKHOVATKIN V,HINDS S,BRZOZOWSKI L,et al.. Colloidal quantum-dot photodetectors exploiting multiexciton generation[J]. Science, 2009,324(5934):1542-1544.
KONSTANTATOS G,SARGENT E H. Solution-processed quantum dot photodetectors[J]. Proc. IEEE, 2009,97(10):1666-1683.
耿卫东,郭嘉,唐静,等. 全无机胶体量子点显示技术[J]. 液晶与显示, 2014,29(4):479-484. GENG W D,GUO J,TANG J,et al.. All-inorganic colloidal quantum dots display technology[J]. Chin. J. Liq. Cryst. Disp., 2014,29(4):479-484. (in Chinese)
GHIMIRE S,BIJU V. Relations of exciton dynamics in quantum dots to photoluminescence,lasing,and energy harvesting[J]. J. Photochem. Photobiol. C:Photochem. Rev., 2018,34:137-151.
王丽娟,范思大,张梁,等. Fe3O4纳米粒子对P3HT:PCBM电池的影响[J]. 发光学报, 2018,39(10):1410-1416. WANG L J,FAN S D,ZHANG L,et al.. Effect of Fe3O4 nanoparticles on P3HT:PCBM solar cells[J]. Chin. J. Lumin., 2018,39(10):1410-1416. (in Chinese)
JANAB,GHOSH A,MATITI S,et al.. Size of CdTe quantum dots controls the hole transfer rate in CdTe quantum dots-MEHPPV polymer nanoparticle hybrid[J]. J. Phys. Chem. C, 2016,120(43):25142-25150.
CHEN H,CHAO P J,HAN D B,et al.. Hydroxyl-terminated CuInS2-based quantum dots:potential cathode interfacial modifiers for efficient inverted polymer solar cells[J]. ACS Appl. Mater. Interfaces, 2017,9(8):7362-7367.
CHEN S F,PENG B,LU F,et al.. Scattering or photoluminescence? Major mechanism exploration on performance enhancement in P3HT-based polymer solar cells with NaYF4:2%Er3+,18%Yb 3+ upconverting nanocrystals[J]. Adv. Opt. Mater., 2014,2(5):442-449.
ZHU T,ZHENG L Y,YAO X,et al.. Ultrasensitive solution-processed broadband PbSe photodetectors through photomultiplication effect[J]. ACS Appl. Mater. Interfaces, 2019,11(9):9205-9212.
GRIMALDI G,CRISP R W,TEN BRINCK S,et al.. Hot-electron transfer in quantum-dot heterojunction films[J]. Nat. Commun., 2018,9:2310-1-10.
KAMAT P V. Photovoltaics:capturing hot electrons[J]. Nat. Chem., 2010,2(10):809-810.
HONG J,WANG H,YUE F Y,et al.. Emission kinetics from PbSe quantum dots in glass matrix at high excitation levels[J]. Phys. Status Solidi, 2018,12(4):1800012-1-6.
张冰,张磊,张蕾. PbSe量子点液芯光纤的温度效应[J]. 发光学报, 2017,38(5):623-629. ZHANG B,ZHANG L,ZHANG L. Temperature effect on PbSe quantum dot-doped liquid core fiber[J]. Chin. J. Lumin., 2017,38(5):623-629. (in Chinese)
YU W W,FALKNER J C,SHIH B S,et al.. Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent[J]. Chem. Mater., 2004,16(17):3318-3322.
0
浏览量
187
下载量
5
CSCD
关联资源
相关文章
相关作者
相关机构