浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 物理学院,黑龙江 哈尔滨,150001
2. 哈尔滨师范大学 物理与电子工程学院,黑龙江 哈尔滨,150025
收稿日期:2019-06-13,
修回日期:2019-07-16,
纸质出版日期:2019-10-05
移动端阅览
陈洪宇, 卞万朋, 王月飞等. CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>表面修饰对SnO<sub>2</sub>基光电探测器性能的影响[J]. 发光学报, 2019,40(10): 1261-1266
CHEN Hong-yu, BIAN Wan-peng, WANG Yue-fei etc. Effect of Surface Decoration of CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> on Performance of SnO<sub>2</sub>-based Photodetector[J]. Chinese Journal of Luminescence, 2019,40(10): 1261-1266
陈洪宇, 卞万朋, 王月飞等. CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub>表面修饰对SnO<sub>2</sub>基光电探测器性能的影响[J]. 发光学报, 2019,40(10): 1261-1266 DOI: 10.3788/fgxb20194010.1261.
CHEN Hong-yu, BIAN Wan-peng, WANG Yue-fei etc. Effect of Surface Decoration of CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> on Performance of SnO<sub>2</sub>-based Photodetector[J]. Chinese Journal of Luminescence, 2019,40(10): 1261-1266 DOI: 10.3788/fgxb20194010.1261.
SnO
2
基紫外探测器具有较高的光响应度,但由于材料存在持续光电导效应,其响应时间较长,限制了其在光电探测领域的应用。为此,我们研究了表面修饰对SnO
2
基光电探测器件的性能影响。采用化学气相沉积的方法制备了高结晶质量的SnO
2
微米线,并在此基础上制备了基于单根SnO
2
微米线的光电探测器。同时制备了高质量的钙钛矿CH
3
NH
3
PbBr
3
材料,并与SnO
2
微米线结合制备出经过修饰的SnO
2
基器件。两种器件在紫外波段都呈现出明显的光响应,响应峰值位于250 nm处。相比单根SnO
2
微米线器件,经过修饰后的SnO
2
微米线探测器的响应度提高了10倍,响应时间由单根SnO
2
微米线器件的几百乃至上千秒缩短为0.9 s。这一研究结果说明我们所采用的方法非常有望应用到高性能SnO
2
光电探测器的制备中。
UV photodetectors based on SnO
2
material usually have high optical responsivity. However
due to the continuous photoconductivity
its response time is usually very long
which limits its application in the field of photodetection. Here we investigated the effect of surface modification on the performance of SnO
2
-based photodetector. The high crystal quality SnO
2
microwires were prepared by chemical vapor deposition and photodetector based on single SnO
2
microwires were also fabricated. At the same time
organic perovskite MAPbBr
3
with high quality was also prepared using solution method and the devices based on SnO
2
decorated with MAPbBr
3
were fabricated in the following. Both devices exhibited significant response in the UV region with a peak at 250 nm. Compared to the device made by a single SnO
2
microwire
the responsivity of the device decorated by CH
3
NH
3
PbBr
3
showed as much as ten times higher and the response time reduced from tens or even hundreds of seconds to 0.9 s. The experiment results indicate that the method we used is very promising for the preparation of high performance SnO
2
photodetectors.
CHEN H Y,LIU H,ZHANG Z M,et al.. Nanostructured photodetectors:from ultraviolet to terahertz[J]. Adv. Mater., 2016,28(3):403-433.
ZHAO S R,NGUYEN H P T,KIBRIA M G,et al.. Ⅲ-nitride nanowire optoelectronics[J]. Prog. Quant. Electron., 2015,44:14-68.
FANG X S,BANDO Y,LIAO M Y,et al.. Single-crystalline ZnS nanobelts as ultraviolet-light sensors[J]. Adv. Mater., 2009,21(20):2034-2039.
LIU K W,SAKURAI M,AONO M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010,10(9):8604-8634.
KONG W Y,WU G A,WANG K Y,et al.. Graphene--Ga2O3 heterojunction for highly sensitive deep UV photodetector application[J]. Adv. Mater., 2016,28(48):10725-10731.
ZHAO B,WANG F,CHEN H Y,et al.. An ultrahigh responsivity (9.7 mAW-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures[J]. Adv. Funct. Mater., 2017,27(17):1700264-1-8.
LIU K W,SAKURAI M,AONO M,et al.. Ultrahigh-gain single SnO2 microrod photoconductor on flexible substrate with fast recovery speed[J]. Adv. Funct. Mater., 2015,25(21):3157-3163.
WANG Z J,LI Z Y,JIANG T T,et al.. Ultrasensitive hydrogen sensor based on Pd0-loaded SnO2 electrospun nanofibers at room temperature[J]. ACS Appl. Mater. Interfaces, 2013,5(6):2013-2021.
ZHANG L,WU H B,LIU B,et al.. Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage[J]. Energ. Environ. Sci., 2014,7(3):1013-1017.
WANG Y X,LIM Y G,PARK M S,et al.. Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances[J]. J. Mater. Chem. A, 2014,2(2):529-534.
DAS S,JAYARAMAN V. SnO2:a comprehensive review on structures and gas sensors[J]. Prog. Mater. Sci., 2014,66:112-255.
ZHANG D Z,SUN Y E,LI P,et al.. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing[J]. ACS Appl. Mater. Interfaces, 2016,8(22):14142-14149.
MOTAUNG D E,MHLONGO G H,MAKGWANE P R,et al.. Ultra-high sensitive and selective H2 gas sensor manifested by interface of n-n heterostructure of CeO2-SnO2 nanoparticles[J]. Sens. Actuators B-Chem., 2018,254:984-995.
SAKURAI M,LIU K W,AONO M. Reversible and nonvolatile modulation of electrical resistance in SnO2 by external strain[J]. Appl. Phys. Express, 2014,7(3):031101.
ZHANG Z Y,XU M Z,LIU L,et al.. Novel SnO2@ZnO hierarchical nanostructures for highly sensitive and selective NO2 gas sensing[J]. Sens. Actuators B-Chem., 2018,257:714-727.
ZHANG Y,XU W X,XU X J,et al.. Self-powered dual-color UV-green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions[J]. J. Phys. Chem. Lett., 2019,10(4):836-841.
ZHOU Q,XU L N,UMAR A,et al.. Pt nanoparticles decorated SnO2 nanoneedles for efficient co gas sensing applications[J]. Sens. Actuators B-Chem., 2018,256:656-664.
LIU C,LI W Z,ZHANG C L,et al.. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%[J]. J. Am. Chem. Soc., 2018,140(11):3825-3828.
RUAN W,HU Y Q,XU F,et al.. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1-xBixBr3[J]. Org. Electron., 2019,70:252-257.
LI F Z,FAN H C,WANG P C,et al.. Improved film morphology of (CH3NH3)3Bi2I9 via cation displacement approach for lead-free perovskite solar cells[J]. J. Mater. Sci., 2019,54(14):10371-10378.
LAAMARI M E,CHEKNANE A,BENGHIA A,et al.. Optimized opto-electronic and mechanical properties of orthorhombic methylamunium lead halides (MAPbX3) (X=I,Br and Cl) for photovoltaic applications[J]. Sol. Energy, 2019,182:9-15.
LIANG Y Q,WANG Y J,MU C,et al.. Achieving high open-circuit voltages up to 1.57 V in hole-transport-material-free MAPbBr3 solar cells with carbon electrodes[J]. Adv. Energy Mater., 2018,8(4):1701159.
CHENG X H,JING L,ZHAO Y,et al.. Crystal orientation-dependent optoelectronic properties of MAPbCl3 single crystals[J]. J. Mater. Chem. C, 2018,6(6):1579-1586.
LIN C H,CHEN R S,CHEN T T,et al.. High photocurrent gain in SnO2 nanowires[J]. Appl. Phys. Lett., 2008,93(11):112115-1-3.
LIU K W,SAKURAI M,LIAO M Y,et al.. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles[J]. J. Phys. Chem. C, 2010,114(46):19835-19839.
0
浏览量
123
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构