浏览全部资源
扫码关注微信
北京交通大学 理学院 北京,100044
收稿日期:2019-04-06,
修回日期:2019-05-02,
网络出版日期:2019-05-05,
纸质出版日期:2019-10-05
移动端阅览
吴静燕, 何大伟, 王永生等. 溶剂热法制备的二硫化钼量子点在多巴胺荧光检测中的应用[J]. 发光学报, 2019,40(10): 1207-1214
WU Jing-yan, HE Da-wei, WANG Yong-sheng etc. Facile Solvothermal Fabrication of MoS<sub>2</sub> Quantum Dots for Highly Fluorescence Detection of Dopamine[J]. Chinese Journal of Luminescence, 2019,40(10): 1207-1214
吴静燕, 何大伟, 王永生等. 溶剂热法制备的二硫化钼量子点在多巴胺荧光检测中的应用[J]. 发光学报, 2019,40(10): 1207-1214 DOI: 10.3788/fgxb20194010.1207.
WU Jing-yan, HE Da-wei, WANG Yong-sheng etc. Facile Solvothermal Fabrication of MoS<sub>2</sub> Quantum Dots for Highly Fluorescence Detection of Dopamine[J]. Chinese Journal of Luminescence, 2019,40(10): 1207-1214 DOI: 10.3788/fgxb20194010.1207.
二硫化钼量子点作为过渡金属硫化物的典型代表,因其独特的光学性质和巨大的应用潜力而备受关注。本文以二硫化钼粉末状晶体为原料,采用溶剂热方法处理得到二硫化钼量子点。在一定的激发条件下,二硫化钼量子点具有很强的荧光特性,可以将其作为荧光探针去检测多巴胺。结果表明,制备的二硫化钼量子点平均尺寸大小约为3 nm,具有很强的荧光特性,荧光量子效率高达57.55%。当多巴胺浓度从0.02 mol/L变为1 000 mol/L时,二硫化钼量子点传感系统会呈现出线性相关的荧光猝灭,且检测限为0.32 mol/L,灵敏度极高。在不同pH值环境和干扰物存在下,二硫化钼量子点传感系统检测多巴胺具有强稳定性和高选择性。二硫化钼量子点因纯度高、尺寸小、荧光强度高等特性在催化、光学成像、显示器件和荧光传感等方面具有潜在的应用前景。
Molybdenum disulfide quantum dots (MoS
2
QDs)
as a typical representative of transition metal dichalcogenides(TMDs)
had attracted much attention due to the unique optical properties and huge potential applications. In this paper
MoS
2
QDs were fabricated through a facile solvothermal method from MoS
2
powder crystals. Under certain excitation conditions
MoS
2
QDs had strong fluorescence properties and were used as fluorescence probes to detect dopamine (DA). The results showed that the average size of the as-prepared MoS
2
QDs was about 3 nm
and the fluorescence quantum efficiency was as high as 57.55%. When the concentration of DA changed from 0.02 to 1 000 mol/L
the fluorescence of the sensing system was quenched with a linear dependence and the limit of detection was 0.32 mol/L
with extremely high sensitivity. MoS
2
QDs sensing system has strong stability and high selectivity for dopamine detection in different pH values and the presence of interferences. MoS
2
QDs had potential applications in catalytic reactions
optical imaging
display devices and fluorescence sensing due to the high purity
small size and high fluorescence intensity.
NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
BAO Q L,LOH K P. Graphene photonics,plasmonics,and broadband optoelectronic devices[J]. ACS Nano, 2012,6(5):3677-3694.
LIU K K,ZHOU R,LIANG Y C,et al.. Towards efficient and stable multi-color carbon nanoparticle phosphors:synergy between inner polar groups and outer silica matrix[J]. Sci. China Mater., 2018,61(9):1191-1200.
ZHANG S,JIA X F,WANG E K. Facile synthesis of optical pH-sensitive molybdenum disulfide quantum dots[J]. Nanoscale, 2016,8(33):15152-15157.
YUWEN L H,ZHOU J J,ZHANG Y Q,et al.. Aqueous phase preparation of ultrasmall MoSe2 nanodots for efficient photothermal therapy of cancer cells[J]. Nanoscale, 2015,8(5):2720-2726.
NIU Y,JIAO W C,WANG R G,et al.. Hybrid nanostructures combining graphene-MoS2 quantum dots for gas sensing[J]. J. Mater. Chem. A, 2016,4(21):8198-8203.
GAN Z X,GUI Q F,SHAN Y,et al.. Photoluminescence of MoS2 quantum dots quenched by hydrogen peroxide:a fluorescent sensor for hydrogen peroxide[J]. J. Appl. Phys., 2016,120(10):104503.
PARK S J,PAK S W,QIU D R,et al.. Structural and optical characterization of MoS2 quantum dots defined by thermal annealing[J]. J. Lumin., 2017,183:62-67.
QIAO W,YAN S M,SONG X,et al.. Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation[J]. Appl. Surf. Sci., 2015,359:130-136.
HARIHARAN S,KARTHIKEYAN B. Optical and surface band bending mediated fluorescence sensing properties of MoS2 quantum dots[J]. RSC Adv., 2016,6(104):101770-101777.
LV Z,MAHMOOD N,TAHIR M,et al.. Fabrication of zero to three dimensional nanostructured molybdenum sulfides and their electrochemical and photocatalytic applications[J]. Nanoscale, 2016,8(43):18250-18269.
GU W,YAN Y H,ZHANG C L,et al.. A one-step synthesis of water-soluble MoS2 quantum dots via hydrothermal method as fluorescent probe for hyaluronidase detection[J]. ACS Appl. Mater. Interfaces, 2016,8(18):11272-11279.
REN X P,WEI Q B,REN P Y,et al.. Hydrothermal-solvothermal cutting integrated synthesis and optical properties of MoS2 quantum dots[J]. Opt. Mater., 2018,86:62-65.
ZHOU K,ZHANG Y,XIA Z N,et al.. As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells[J]. Nanotechnology, 2016,27(27):275101.
PEI L,TAO S,SHU H B,et al.. Structural stability,electronic and magnetic properties of MoS2 quantum dots based on the first principles[J]. Solid State Commun., 2015,218:25-30.
HALDAR D,DINDA D,KUMAR SAHA S. High selectivity in water soluble MoS2 quantum dots for sensing nitro explosives[J]. J. Mater. Chem. C, 2016,4(26):6321-6326.
WANG N,WEI F,QI Y H,et al.. Synthesis of strongly fluorescent molybdenum disulfide nanosheets for cell-targeted labeling[J]. ACS Appl. Mater. Interfaces, 2014,6(22):19888-19894.
XU S J,LI D,WU P Y. One-pot,facile,and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction[J]. Adv. Funct. Mater., 2015,25(7):1127-1136.
REN X P,PANG L Q,ZHANG Y X,et al.. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2015,3(20):10693-10697.
李继军,聂晓梦,甄威,等. 显示技术比较及新进展[J]. 液晶与显示,2018,33(1):74-84.LI J J,NIE X M,ZHEN W,et al.. New developments and comparisons in display technology[J]. Chin. J. Liq. Cryst. Disp., 2018,33(1):74-84. (in Chinese)
ZHONG Y P,XUE F F,WEI P,et al.. Water-soluble MoS2 quantum dots for facile and sensitive fluorescence sensing of alkaline phosphatase activity in serum and live cells based on the inner filter effect[J]. Nanoscale, 2018,10(45):21298-21306.
张锋,薛建设,喻志农,等. 量子点发光在显示器件中的应用[J].液晶与显示,2012,27(2):163-167. ZHANG F,XUE J S,YU Z N,et al.. Quantum-dot light emitting device for displays[J]. Chin. J. Liq. Cryst. Disp., 2012,27(2):163-167. (in Chinese)
FAHIMI-KASHANI N,RASHTI A,REZA HORMOZI-NEZHAD M,et al.. MoS2 quantum-dots as a label-free fluorescent nanoprobe for the highly selective detection of methyl parathion pesticide[J]. Anal. Methods, 2016,9(4):716-723.
LI W Z,LI F,WANG X,et al.. A facile lyophilization synthesis of MoS2 QDs@graphene as a highly active electrocatalyst for hydrogen evolution reaction[J]. Appl. Surf. Sci., 2017,401:190-197.
DAI W H,DONG H F,FUGETSU B,et al.. Tunable fabrication of molybdenum disulfide quantum dots for intracellular microRNA detection and multiphoton bioimaging[J]. Small, 2015,11(33):4158-4164.
ZHANG X,LAI Z C,LIU Z D,et al.. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots[J]. Angew. Chem., 2015,127(18):5515-5518.
GOPALAKRISHNAN D,DAMIEN D,LI B,et al.. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chem. Commun., 2015,51(29):6293-6296.
WANG Z S,LIN J T,GAO J W,et al.. Two optically active molybdenum disulfide quantum dots as tetracycline sensors[J]. Mater. Chem. Phys., 2016,178:82-87.
XU Y L,NIU X Y,CHEN H L,et al.. Switch-on fluorescence sensor for ascorbic acid detection based on MoS2 quantum dots-MnO2 nanosheets system and its application in fruit samples[J]. Chin. Chem. Lett., 2017,28(2):338-344.
LI B L,CHEN L X,ZOU H L,et al.. Electrochemically induced Fenton reaction of few-layer MoS2 nanosheets:preparation of luminescent quantum dots via a transition of nanoporous morphology[J]. Nanoscale, 2014,6(16):9831-9838.
JIN J Y,HE M,WU H M,et al.. Selective detection of dopamine based on Cu2O@Pt core-shell nanoparticles modified electrode in the presence of ascorbic acid and uric acid[J]. J. Alloys Compd., 2016,689:174-181.
LI J,ZHANG N,SUN Q Q,et al.. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element[J]. Talanta, 2016,159:379-386.
ZHAO J J,ZHAO L M,LAN C Q,et al.. Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine[J]. Sens. Actuators B, 2016,223:246-251.
DIAZ-DIESTRA D,THAPA B,BELTRAN-HUARAC J,et al.. L-cysteine capped ZnS:Mn quantum dots for room-temperature detection of dopamine with high sensitivity and selectivity[J]. Biosens. Bioelectron., 2017,87:693-700.
LI Y R,GU Y,ZHENG B,et al.. A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine[J]. Talanta, 2017,162:80-89.
LIN F E,GUI C,WEI W,et al.. Dopamine assay based on an aggregation-induced reversed inner filter effect of gold nanoparticles on the fluorescence of graphene quantum dots[J]. Talanta, 2016,158:292-298.
NUMAN A,SHAHID M M,OMAR F S,et al.. Facile fabrication of cobalt oxide nanograin-decorated reduced graphene oxide composite as ultrasensitive platform for dopamine detection[J]. Sens. Actuators B, 2017,238:1043-1051.
WANG Y Y,HUANG Y W,WANG B,et al.. Three-dimensional porous graphene for simultaneous detection of dopamine and uric acid in the presence of ascorbic acid[J]. J. Electroanal. Chem., 2016,782:76-83.
KISS L,DAVID V,DAVID I G,et al.. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples[J]. Talanta, 2016,160:489-498.
LIU L,XIA N,MENG J J,et al.. An electrochemical aptasensor for sensitive and selective detection of dopamine based on signal amplification of electrochemical-chemical redox cycling[J]. J. Electroanal. Chem., 2016,775:58-63.
WENG S H,LIANG D,QIU H Z,et al.. A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe[J]. Sens. Actuators B, 2015,221:7-14.
ZHANG X L,ZHU Y G,LI X,et al.. A simple,fast and low-cost turn-on fluorescence method for dopamine detection using in situ reaction[J]. Anal. Chim. Acta, 2016,944:51-56.
RAJKUMAR C,THIRUMALRAJ B,CHEN S M,et al.. A simple preparation of graphite/gelatin composite for electrochemical detection of dopamine[J]. J. Colloid Interface Sci., 2017,487:149-155.
SUZUKI Y. Design and synthesis of fluorescent reagents for selective detection of dopamine[J]. Sens. Actuators B, 2017,239:383-389.
WANG Y,NI Y N. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection[J]. Anal. Chem., 2014,86(15):7463-7470.
0
浏览量
110
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构