浏览全部资源
扫码关注微信
湖北省农业科学院 农业质量标准与检测技术研究所,湖北 武汉,430064
收稿日期:2018-08-14,
修回日期:2018-10-16,
网络出版日期:2018-11-08,
纸质出版日期:2019-08-05
移动端阅览
夏虹, 彭茂民, 刘丽. 磁性壳聚糖/ZnS:Fe复合纳米粒子的制备及其对孔雀石绿的光催化降解[J]. 发光学报, 2019,40(8): 993-1000
XIA Hong, PENG Mao-min, LIU Li. Magnetic Chitosan/ZnS:Fe Nanocomposite: Preparation and Application in Malachite Green Removal[J]. Chinese Journal of Luminescence, 2019,40(8): 993-1000
夏虹, 彭茂民, 刘丽. 磁性壳聚糖/ZnS:Fe复合纳米粒子的制备及其对孔雀石绿的光催化降解[J]. 发光学报, 2019,40(8): 993-1000 DOI: 10.3788/fgxb20194008.0993.
XIA Hong, PENG Mao-min, LIU Li. Magnetic Chitosan/ZnS:Fe Nanocomposite: Preparation and Application in Malachite Green Removal[J]. Chinese Journal of Luminescence, 2019,40(8): 993-1000 DOI: 10.3788/fgxb20194008.0993.
采用化学共沉淀法制备了磁性壳聚糖,然后以制得磁性壳聚糖纳米粒子为基体,利用层层自组装原理,在磁性壳聚糖表面原位生长ZnS:Fe纳米晶,制备得到磁性壳聚糖/ZnS:Fe复合纳米粒子。采用XRD和VSM对其进行表征,结果表明,制备得到的磁性壳聚糖/ZnS:Fe复合纳米粒子具有超顺磁性能,室温下饱和磁化强度为15.88 Am
2
kg
-1
。以孔雀石绿为模型污染物,采用UV-Vis手段研究磁性壳聚糖/ZnS:Fe复合纳米粒子的光催化降解性能。实验结果表明,向初始浓度为10 mg/L孔雀石绿溶液中加入100 mg/L磁性壳聚糖/ZnS:Fe复合纳米粒子,60 min时孔雀石绿的去除率为95.3%,重复使用5次后,降解率略有降低(从95.3%降低到80.8%),其反应过程符合假一级动力学的假设。因此,磁性壳聚糖/ZnS:Fe复合纳米粒子可以光催化降解孔雀石绿。
In photodegradation studies
the effect of main experimental parameters on the decolorization efficiency was studied and optimized. The maximum decolorization efficiency of 95.3% was obtained when the initial MG concentration
M-CS/ZnS:Fe dosage
and contact time were optimally set as 10 mg/L
100 mg/L
and 60 min
respectively. The process kinetics can be successfully fitted to the first order kinetics of Langmuir-Hinshelwood model. Moreover
M-CS/ZnS:Fe could be easily separated under an external magnetic field. After five consecutive runs
a small and gradual decrease from 95.3% to 80.8% in the decolorization ration was observed.
ESKIZEYBEK V,SARI F,GVLCE H,et al.. Preparation of the new polyaniline/ZnO nanocomposite and its photocatalytic activity for degradation of methylene blue and malachite green dyes under UV and natural sun lights irradiations[J]. Appl. Cat. B:Environ., 2012,119-120:197-206.
RAHMAN I A,SAAD B,SHAIDAN S,et al.. Adsorption characteristics of malachite green on activated carbon derived from rice husks produced by chemical-thermal process[J]. Bioresour. Technol., 2005,96(14):1578-1583.
KANT S,PATHANIA D,SINGH P,et al.. Removal of malachite green and methylene blue by Fe0.01Ni0.01Zn0.98O/polyacrylamide nanocomposite using coupled adsorption and photocatalysis[J]. Appl. Cat. B:Environ., 2014,147:340-352.
JIANG F,DINH DM,HSIEH YL. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels[J]. Carbohydr. Polym., 2017,173:286-294.
BEAKOU B H,EL HASSANI K,HOUSSAINI M A,et al.. A novel biochar from Manihot esculenta Crantz waste:application for the removal of Malachite Green from wastewater and optimization of the adsorption process[J]. Water Sci. Technol., 2017,76(6):1447-1456.
ZHENG H,QI J Q,JIANG R X,et al.. Adsorption of malachite green by magnetic litchi pericarps:a response surface methodology investigation[J]. J. Environ. Manage., 2015,162:232-239.
BEKI Z,ZVERI C,SEKI Y,et al.. Sorption of malachite green on chitosan bead[J]. J. Hazard. Mater., 2008,154(1-3):254-261.
LIMA D R,KLEIN L,DOTTO G L. Application of ultrasound modified corn straw as adsorbent for malachite green removal from synthetic and real effluents[J]. Environ. Sci. Poll. Res., 2017,24(26):21484-21495.
RAJABI H R,ARJMAND H,KAZEMDEHDASHTI H,et al.. A comparison investigation on photocatalytic activity performance and adsorption efficiency for the removal of cationic dye:quantum dots vs. magnetic nanoparticles[J]. J. Environ. Chem. Eng., 2016,4(8):2830-2840.
MEENA S,VAYA D,DAS B K. Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial[J]. Bull. Mater. Sci., 2016,39(7):1735-1743.
RAJABI H R,KHANI O,SHAMSIPUR M,et al.. High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation[J]. J. Hazard. Mater., 2013,250-251:370-378.
RAJABI H R,FARSI M. Quantum dot based photocatalytic decolorization as an efficient and green strategy for the removal of anionic dye[J]. Mater. Sci. Semicond. Process., 2015,31:478-486.
SHEN J Y,WU Y N,FU L,et al.. Preparation of doped TiO2 nanofiber membranes through electrospinning and their application for photocatalytic degradation of malachite green[J]. J. Mater. Sci., 2014,49(5):2303-2314.
GOLE V L,ALHAT A. Treatment of malachite green dye using combined oxidation techniques based on different irradiation[J]. Korean J. Chem. Eng., 2017,34(5):1393-1399.
ALIPANAHPOUR D I L E,GHAEDI M,ASFARAM A,et al.. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization[J]. Ultrason. Sonochem., 2017,39:374-383.
KEFENI K K,MAMBA B B,MSAGATI T A M. Application of spinel ferrite nanoparticles in water and wastewater treatment:a review[J]. Sep. Purif. Technol., 2017,188:399-422.
KHAPARDE R,ACHARYA S. Effect of isovalent dopants on photodegradation ability of ZnS nanoparticles[J]. Spectrochim.Acta Part A, Mol. Biomol. Spectrosc., 2016,163:49-57.
SHAMSIPUR M,RAJABI H R.Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet:effect of ferric ion doping[J]. Spectrochim. Acta Part A,Mol.Biomol. Spectrosc., 2014,122:260-267.
WU L,LIN Z Z,ZHONG H P,et al.. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica[J]. Food Chem., 2017,229:847-853.
ZHOU L M,JIN J Y,LIU Z R,et al.. Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles[J]. J. Hazard. Mater., 2011,185(2-3):1045-1052.
LIU L,XIA H,PENG M M. Synthesis of CS-Fe3O4@ZnSe:Mn/ZnS magnetic and fluorescent biofunctional nanoparticles by electrostatic interaction approach[J]. Mater. Lett., 2016,185:148-151.
LIU L,XIAO L,CAO C H. Novel magnetic-fluorescent CS-Fe3O4@ZnS:Mn/ZnS (core/shell) nanoparticles:preparation,characterization and damage to bovine serum albumin under UV irradiation[J]. Mater. Chem. Phys., 2013,140(2-3):575-582.
DIXIT N,VAGHASIA J V,SONI S S,et al.. Photocatalytic activity of Fe doped ZnS nanoparticles and carrier mediated ferromagnetism[J]. J. Environ. Chem. Eng., 2015,3(3):1691-1701.
FARZADKIA M,BAZRAFSHAN E,ESRAFILI A,et al.. Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles[J]. J. Environ. Health Sci. Eng., 2015,13:35.
JAFARI N,KASRA-KERMANSHAHI R,SOUDI M R,et al.. Degradation of a textile reactive azo dye by acombined biological-photocatalytic process:Candida tropicalis Jks2-TiO2/UV[J]. Iranian J. Enviro. Health Sci. Eng., 2012,9(1):33.
SAIKIA L,BHUYAN D,SAIKIA M,et al.. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light[J]. Appl. Cat. A:Gen., 2015,490:42-49.
PIRKANNIEMI K,SILLANP M. Heterogeneous water phase catalysis as an environmental application:a review[J]. Chemosphere, 2002,48(10):1047-1060.
0
浏览量
94
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构