浏览全部资源
扫码关注微信
1. 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2. 中国科学院 可再生能源重点实验室, 广东 广州 510640
收稿日期:2018-05-01,
修回日期:2018-06-21,
网络出版日期:2018-07-06,
纸质出版日期:2019-02-05
移动端阅览
高文辉, 翟光美, 张彩峰等. 表面配体和器件结构对PbS胶体量子点电池性能的影响[J]. 发光学报, 2019,40(2): 215-223
GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng etc. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(2): 215-223
高文辉, 翟光美, 张彩峰等. 表面配体和器件结构对PbS胶体量子点电池性能的影响[J]. 发光学报, 2019,40(2): 215-223 DOI: 10.3788/fgxb20194002.0215.
GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng etc. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(2): 215-223 DOI: 10.3788/fgxb20194002.0215.
利用吸收光谱、傅里叶变换红外光谱和循环伏安等表征技术,分析了利用四丁基碘化铵(TBAI)和1,2-乙二硫醇(EDT)配体钝化处理的PbS胶体量子点的光学性质、表面化学及其能级结构,并在此基础上分别以PbS-TBAI薄膜、PbS-EDT薄膜和PbS-TBAI/PbS-EDT薄膜作为有源层制备了PbS胶体量子点/ZnO纳米粒子异质结太阳能电池,以比较研究表面配体和器件结构对器件光伏性能及其稳定性的影响。结果表明,TBAI和EDT均能与PbS胶体量子点表面原有的油酸配体实现良好置换,但是配体置换之后量子点表面均残留少量油酸分子;PbS-TBAI薄膜的导带底为-5.12 eV,价带顶为-3.86 eV,而PbS-EDT薄膜的导带底为-4.99 eV,价带顶为-3.74 eV,后者相对前者出现了明显的能带上移;PbS-TBAI/PbS-EDT双配体器件的光伏性能最优,能量转化效率达到4.43%;随着空气暴露时间的增加,PbS-TBAI/PbS-EDT双配体器件和PbS-TBAI单配体器件表现出相似的性能变化趋势,于3 d后达到最优光伏性能,而PbS-EDT单配体器件的空气稳定性差,3 d后的能量转换效率下降至初始效率的1/4。本工作的研究结果将不仅有助于加深对PbS胶体量子点电池性能变化规律的认识,而且有望促进该类电池制备技术的进一步优化。
The optical properties
surface chemistry and band energies of PbS colloidal quantum dots (CQDs) passivated with tetrabutylammonium iodide(PbS-TBAI) and 1
2-ethanedithiol(EDT) were analyzed by absorption spectroscopy
Fourier transform infrared spectroscopy and cyclic voltammetry measurements. Also
the photovoltaic performance and air stability of PbS CQDs/ZnO nanoparticles heterojunction solar cells using PbS-TBAI
PbS-EDT and PbS-TBAI/PbS-EDT films as active layers respectively were investigated. The results showed that both TBAI and EDT ligands could achieve good ligand exchange with original oleic acid ligands on the surface of PbS CQDs
while a small number of residual oleic acid molecules remained in the PbS CQDs films. The conduction band minimum and valence band maximum of the PbS CQDs treated with TBAI are -3.86 eV and -5.12 eV
while they can be upshifted to -3.74 eV and -4.99 eV
respectively
for the PbS CQDs treated with EDT. The PbS-TBAI/PbS-EDT device exhibited the highest power conversion efficiency of 4.43% among these three type of devices. With the increase of air exposure time
the PbS-TBAI/PbS-EDT device exhibited similar performance evolution to the PbS-TBAI device and achieved its best performance after three days of air exposure. However
the PbS-EDT device showed poor air stability and its efficiency was reduced to a quarter of its initial value after three days of air exposure.This work is not only capable of deepening the understanding of the performance evolution of PbS-CQD solar cells
but also capable of guiding the further optimization of these devices.
YUAN M J,LIU M X,SARGENT E H. Colloidal quantum dot solids for solution-processed solar cells[J]. Nat. Energy, 2016,1(3):16016-1-9.
KIM T,PALMIANO E,LIANG R Z,et al.. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption[J]. Appl. Phys. Lett., 2017,110(22):223903-1-5.
LAN X Z,VOZNYY O,DE ARQUER F P G,et al.. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation[J]. Nano Lett., 2016,16(7):4630-4634.
LPEZ A B C,VEGA A M,LPEZ A L. Next Generation of Photovoltaics[M]. Berlin,Heidelberg:Springer, 2012.
BEARD M C. Multiple exciton generation in semiconductor quantum dots[J]. J. Phys. Chem. Lett., 2011,2(11):1282-1288.
PIETRYGA J M,PARK Y S,LIM J,et al.. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chem. Rev., 2016,116(18):10513-10622.
SHULGA A G,PIVETEAU L,BISRI S Z,et al.. Double gate PbS quantum dot field-effect transistors for tuneable electrical characteristics[J]. Adv. Electron. Mater., 2016,2(4):1500467.
SUKHOVATKIN V,HINDS S,BRZOZOWSKI L,et al.. Colloidal quantum-dot photodetectors exploiting multiexciton generation[J]. Science, 2009,324(5934):1542-1544.
KAGAN C R,LIFSHITZ E,SARGENT E H,et al.. Building devices from colloidal quantum dots[J]. Science, 2016,353(6302):aac5523-1-9.
MCDONALD S A,KONSTANTATOS G,ZHANG S G,et al.. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat. Mater., 2005,4(2):138-142.
KIM G H,DE ARQUER F P G,YOON Y J,et al.. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers[J]. Nano Lett., 2015,15(11):7691-7696.
LIU M X,VOZNYY O,SABATINI R,et al.. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids[J]. Nat. Mater., 2016,16(2):258-263.
CAO Y M,STAVRINADIS A,LASANTA T,et al.. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nat. Energy, 2016,1(4):16035-1-23.
MA W L,SWISHER S L,EWERS T,et al.. Photovoltaic performance of ultrasmall PbSe quantum dots[J]. ACS Nano, 2011,5(10):8140-8147.
ZHAI G M,CHURCH C P,BREEZE A J,et al.. Quantum dot PbS0.9Se0.1/TiO2 heterojunction solar cells[J]. Nanotechnology, 2012,23(40):405401-1-7.
王恒,翟光美,张继涛,等. PbS量子点能级结构的尺寸和配体依赖性及其对异质结电池性能的影响[J]. 无机材料学报, 2016,31(9):915-922. WANG H,ZHAI G M,ZHANG J T,et al.. PbS quantum dots:size,ligand dependent energy level structures and their effects on the performance of heterojunction solar cells[J]. J. Inorgan. Mater., 2016,31(9):915-922. (in Chinese)
LAN X Z,VOZNYY O,KIANI A,et al.. Passivation using molecular halides increases quantum dot solar cell performance[J]. Adv. Mater., 2016,28(2):299-304.
CHUANG C H M,BROWN P R,BULOVIC' V,et al.. Improved performance and stability in quantum dot solar cells through band alignment engineering[J]. Nat. Mater., 2014,13(8):796-801.
ZHAI G M,BEZRYADINA A,BREEZE A J,et al.. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency[J]. Appl. Phys. Lett., 2011,99(6):063512-1-3.
LIU D Y,KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat. Photon., 2014,8(2):133-138.
HUANG Z,ZHAI G M,ZHANG Z M,et al.. Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation[J]. CrystEngComm, 2017,19(6):946-951.
解镕玮. PbS、FeS2纳米晶光电性能及在薄膜太阳能电池中的应用研究[D]. 太原:太原理工大学, 2015. XIE R W. The Optoelectronic Properties and Applications in Thin Film Solar Cells of PbS and Pyrite FeS2 Nanocrystals[D]. Taiyuan:Taiyuan University of Technology, 2015. (in Chinese)
ZHAI G M,XIE R W,WANG H,et al.. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films[J]. J. Alloys Compd., 2016,674:9-15.
NING Z J,VOZNYY O,PAN J,et al.. Air-stable n-type colloidal quantum dot solids[J]. Nat. Mater., 2014,13(8):822-828.
STAVRINADIS A,PRADHAN S,PAPAGIORGIS P,et al.. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10%[J]. ACS Energy Lett., 2017,2(4):739-744.
GAO W H,ZHAI G M,ZHANG C F,et al.. Towards understanding the initial performance improvement of PbS quantum dot solar cells upon short-term air exposure[J]. RSC Adv., 2018,8(27):15149-15157.
0
浏览量
538
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构