浏览全部资源
扫码关注微信
1. 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室,吉林 长春,130033
2. 郑州大学 物理工程学院, 河南 郑州 450052
收稿日期:2018-05-21,
修回日期:2018-09-03,
网络出版日期:2018-06-13,
纸质出版日期:2019-02-05
移动端阅览
李振, 臧金浩, 娄庆等. 高温高压下多环有机物合成亚微米金刚石[J]. 发光学报, 2019,40(2): 153-158
LI Zhen, ZANG Jin-hao, LOU Qing etc. Sub-micron Sized Diamonds Prepared from Polycyclic Organic Compounds by HPHT Method[J]. Chinese Journal of Luminescence, 2019,40(2): 153-158
李振, 臧金浩, 娄庆等. 高温高压下多环有机物合成亚微米金刚石[J]. 发光学报, 2019,40(2): 153-158 DOI: 10.3788/fgxb20194002.0153.
LI Zhen, ZANG Jin-hao, LOU Qing etc. Sub-micron Sized Diamonds Prepared from Polycyclic Organic Compounds by HPHT Method[J]. Chinese Journal of Luminescence, 2019,40(2): 153-158 DOI: 10.3788/fgxb20194002.0153.
亚微米尺寸的金刚石粉末对超精细研磨抛光而言是非常理想的磨料,但高品质亚微米尺寸金刚石粉末的合成与制备到目前为止仍面临着许多的困难和挑战。在避免使用金属触媒的情况下,以萘为前驱体在11 GPa压强、1 700℃的温度条件下成功合成了高品质亚微米尺寸的金刚石粉末。所合成的金刚石粉末具有比较高的相纯度,金刚石晶粒普遍都是晶体形态发育良好且相互独立彼此分散的自形晶。晶粒粒度的频率分布属于正偏态分布,相应的平均值、中数及众数分别为158.1,221.5,262.5 nm。对数正态分布拟合中,晶粒粒度的期望值和标准偏差分别为(243.34.2)nm和(122.35.4)nm。将近96%的晶粒都分布在亚微米尺寸范围内。本工作将为高品质亚微米尺寸金刚石粉末的合成与制备提供有效途径。
The sub-micron size diamond powders are ideal abrasives for ultrafine rubbing and polishing. However
the synthesis and preparation of high-quality sub-micron size diamond powders are still faced with lots of difficulties and challenges until now. High-quality diamond powders with sub-micron size were synthesized successfully from naphthalene at a temperature of 1 700℃ and a pressure of 11 GPa without using metal-catalysts. The phase purity of the synthesized diamond powders was extremely high. Most of the diamond grains were euhedral crystals showed well-developed crystal morphology and dispersed to each other. The frequency distribution of the diamond grain size was in positive skew distribution
values of the mean
median and mode were 158.1
221.5
262.5 nm
respectively. For lognormal distribution
the expected value of the diamond grain size and the standard deviation were (243.34.2) nm and (122.35.4) nm
respectively. Nearly 96% of the diamond grains were distributed in the sub-micron size range. It may provide an effective way for the synthesis and preparation of high-quality sub-micron size diamond powders.
RUDOLPH P. Handbook of Crystal Growth:Bulk Crystal Growth[M]. 2nd ed. Amsterdam:Elsevier, 2015.
KHARISOV B I,KHARISSOVA O V,CHVEZ-GUERRERO L. Synthesis techniques,properties,and applications of nanodiamonds[J]. Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2010,40(2):84-101.
NOR R M,BAKAR S A,THANDAVAN T M,et al.. Diamond:synthesis,characterisation and applications[M]. YAHYA N. Carbon and Oxide Nanostructures, Berlin,Heidelberg:Springer, 2010:195-217.
SCHIRHAGL R,CHANG K,LORETZ M,et al.. Nitrogen-vacancy centers in diamond:nanoscale sensors for physics and biology[J]. Annu. Rev. Phys. Chem., 2014,65:83-105.
EKIMOV E A,KONDRIN M V. Vacancy-impurity centers in diamond:prospects for synthesis and applications[J]. Phys.-Usp., 2017,60(6):539-558.
LIU W Y,TAGAWA M,XIN H L,et al.. Diamond family of nanoparticle superlattices[J]. Science, 2016,351(6273):582-586.
BABINEC T M,HAUSMANN B J M,KHAN M,et al.. A diamond nanowire single-photon source[J]. Nat. Nanotechnol., 2010,5(3):195-199.
HUANG Q,YU D L,XU B,et al.. Nanotwinned diamond with unprecedented hardness and stability[J]. Nature, 2014, 510(7504):250-253.
LIU X B,JIA X P,MA H A,et al.. HPHT synthesis of high-quality diamond single crystals with micron grain size[J]. Chin. Phys. Lett., 2009,26(3):038102-1-4.
CHUNG H K,SUNG J C. The CVD growth of micro crystals of diamond[J]. Diamond Relat. Mater., 2001,10(9-10):1584-1587.
ZHANG T,SUN F H,SHEN B,et al.. CVD micron diamond powders[J]. Adv. Mater. Res., 2013,797:495-499.
STACEY A,AHARONOVICH I,PRAWER S,et al.. Controlled synthesis of high quality micro/nano-diamonds by microwave plasma chemical vapor deposition[J]. Diamond Relat. Mater., 2009,18(1):51-55.
BUTLER J E,SUMANT A V. The CVD of nanodiamond materials[J]. Chem. Vap. Deposition, 2008,14(7-8):145-160.
DOLMATOV V Y,FUJIMURA T. Physical and chemical problems of modification of detonation nanodiamond surface properties[M]. GRUEN D M,SHENDEROVA O A,VUL'A Y. Synthesis,Properties and Applications of Ultrananocrystalline Diamond, Dordrecht:Springer, 2005.
DONNET J B,FOUSSON E,WANG T K,et al.. Dynamic synthesis of diamonds[J]. Diamond Relat. Mater., 2000,9(3-6):887-892.
ōSAWA E. Recent progress and perspectives in single-digit nanodiamond[J]. Diamond Relat. Mater., 2007,16(12):2018-2022.
OSAWA E. Disintegration and purification of crude aggregates of detonation nanodiamond[M]. GRUEN D M,SHENDEROVA O A,VUL'A Y. Synthesis,Properties and Applications of Ultrananocrystalline Diamond, Dordrecht:Springer, 2005.
FANG L M, OHFUJI H, IRIFUNE T. A novel technique for the synthesis of nanodiamond powder[J]. J. Nanomater., 2013,2013:201845-1-4.
FANG L M,CHEN X P,OHFUJI H,et al.. Formation of diamond powders from melamine under high pressure and high temperature[J]. Chin. Phys. C, 2013,37(8):088002-1-4.
WALKER D,CARPENTER M A,HITCH C M. Some simplifications to multianvil devices for high pressure experiments[J]. Am. Mineral., 1990,75(9-10):1020-1028.
HUPPERTZ H. Multianvil high-pressure/high-temperature synthesis in solid state chemistry[J]. Z. Kristallogr.-Cryst. Mater., 2004,219(6):330-338.
LEINENWEBER K D,TYBURCZY J A,SHARP Y G,et al.. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies)[J]. Am. Mineral., 2012,97(2-3):353-368.
DAVYDOV V A,RAKHMANINA A V,AGAFONOV V,et al.. Conversion of polycyclic aromatic hydrocarbons to graphite and diamond at high pressures[J]. Carbon, 2004,42(2):261-269.
FERRARI A C,ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys. Rev. B, 2000, 61(20):14095-14107.
IRIFUNE T,KURIO A,SAKAMOTO S,et al.. Materials:ultrahard polycrystalline diamond from graphite[J]. Nature, 2003,421(6923):599-600.
TONKOV E Y,PONYATOVSKY E G. Phase Transformations of Elements Under High Pressure[M]. Boca Raton:CRC Press, 2005.
DAVYDOV V A,AGAFONOV V,KHABASHESKU V N. Comparative study of condensation routes for formation of nano-and microsized carbon forms in hydrocarbon,fluorocarbon,and fluoro-hydrocarbon systems at high pressures and temperatures[J]. J. Phys. Chem. C, 2016,120(51):29498-29509.
YE F,LU K. Crystallization kinetics of amorphous solids under pressure[J]. Phys. Rev. B, 1999,60(10):7018-7024.
0
浏览量
166
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构