浏览全部资源
扫码关注微信
1. 桂林电子科技大学 机电工程学院,广西 桂林,541004
2. 广西制造系统与先进制造技术重点实验室,广西 桂林,541004
收稿日期:2018-04-02,
修回日期:2018-06-19,
网络出版日期:2018-07-06,
纸质出版日期:2019-01-05
移动端阅览
雷庭, 周德俭, 唐睿强等. 埋入光纤挠性基板的光电耦合模块设计[J]. 发光学报, 2019,40(1): 76-81
LEI Ting, ZHOU De-jian, TANG Rui-qiang etc. Design of Photoelectric Coupler Module with Optical Fiber Embedded in Flexible Printed Circuit Board[J]. Chinese Journal of Luminescence, 2019,40(1): 76-81
雷庭, 周德俭, 唐睿强等. 埋入光纤挠性基板的光电耦合模块设计[J]. 发光学报, 2019,40(1): 76-81 DOI: 10.3788/fgxb20194001.0076.
LEI Ting, ZHOU De-jian, TANG Rui-qiang etc. Design of Photoelectric Coupler Module with Optical Fiber Embedded in Flexible Printed Circuit Board[J]. Chinese Journal of Luminescence, 2019,40(1): 76-81 DOI: 10.3788/fgxb20194001.0076.
为了提高埋入光纤挠性基板光电互联系统中激光束与光纤之间的耦合效率,设计了一种可分离式的高效光电耦合模块。对耦合模块的结构尺寸进行了设计,并运用Matlab软件分析了激光束经过45全反射镜时的能流变化情况;针对芯径为62.5 m、数值孔径为0.25的多模光纤,利用Zemax软件仿真模拟光纤耦合系统,并用正交下降法优化耦合系统结构,将单路波长为1 310 nm、输出功率为1 W的垂直腔面激光束耦合进光纤。分析结果表明,耦合效率与轴向偏差、角向偏差成中心对称分布,当制造误差最大时,耦合效率达到79.37%,耦合损耗为1.00 dB。该光电耦合模块具有较高的定位误差,最高耦合效率可达85.35%,最低耦合损耗为0.69 dB。
In order to improve the coupling efficiency between the laser beams and the fiber embedded in the optical fiber interconnection system of the flexible substrate
a detachable and efficient photoelectric coupling module was designed in this paper. First of all
the structure size of the coupling module was analyzed
and the energy flow change of the laser beam was simulated with Matlab software after passing through the 45 total reflection mirror. In addition
Zemax software was used to simulate the fiber coupling system and optimize the structure of the coupling system with the orthogonal descent method
in regard to the multi-mode optical fiber with a core diameter of 62.5 m and a numerical aperture of 0.25. Furthermore
the vertical cavity surface emitting laser beams with a wavelength of 1 310 nm and an output power of 1 W were coupled into the fiber. The analysis results showed that the coupling efficiency was axially symmetrical with axial deviation and angular deviation. When the manufacture deviation was maximum
the coupling efficiency reached 79.37% and the coupling loss was 1.00 dB. Therefore
the module had a high position deviation
the highest coupling efficiency can reach up to 85.35% and the lowest coupling loss was 0.69 dB.
毛久兵,杨伟,冯晓娟,等. 柔性光电互联电路研究现状[J]. 激光与光电子学进展, 2016,53(8):080004-1-7. MAO J B,YANG W,FENG X J,et al.. Research status of flexible electro-optical circuit for interconnection[J]. Laser Optoelect. Prog., 2016,53(8):080004-1-7. (in Chinese)
CHEN J,BAMIEDAKIS N,VASIL'EV P P,et al.. High-bandwidth and large coupling tolerance graded-index multimode polymer waveguides for on-board high-speed optical interconnects[J]. J. Lightw. Technol., 2016,34(12):2934-2940.
NIEWEGLOWSKI K,LORENZ L,LNGEN S,et al.. Optical coupling with flexible polymer waveguides for chip-to-chip interconnects in electronic systems[J]. Microelectron. Reliabil., 2018,84:121-126.
LEE W J,HWANG S H,LIM J W,et al.. Optical interconnection module integrated on a flexible optical/electrical hybrid printed circuit board[C]. Proceedings of The 200959th Electronic Components and Technology Conference,San Diego,USA, 2009:1802-1805.
CHEN C T,HSIAO H L,CHANG C C,et al.. 4 channels10-Gbps optoelectronic transceiver based on silicon optical bench technology[C]. Proceedings of SPIE 8267,Optoelectronic Interconnects Ⅻ,San Francisco,USA, 2012:8.
成磊,周德俭,吴兆华. 光电互联PCB热循环可靠性研究[J]. 机械强度, 2017,39(4):904-908. CHENG L,ZHOU D J,WU Z H. Study on reliability of photoelectric PCB under thermal cycle[J]. J. Mechan. Strength,2017,39(4):904-908. (in Chinese)
成磊,周德俭,吴兆华. 光电互联PCB随机振动响应分析[J]. 北京理工大学学报, 2017,37(6):631-636. CHENG L,ZHOU D J,WU Z H. Analysis on random vibration response of photoelectric PCB[J].Trans. Beijing Inst. Technol., 2017,37(6):631-636. (in Chinese)
CHUNG I S. Study on differences between high contrast grating reflectors for TM and TE polarizations and their impact on VCSEL designs[J]. Opt. Express, 2015,23(13):16730-16739.
VAN ERPS J,DEBAES C,THIENPONT H. Design and tolerance analysis of out-of-plane coupling components for printed-circuit-board-level optical interconnections[J]. IEEE J. Sel. Top. Quantum Electron., 2010,16(5):1347-1354.
0
浏览量
161
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构