浏览全部资源
扫码关注微信
1. 太原理工大学 新材料工程技术研究中心,山西 太原,030024
2. 太原理工大学 界面科学与工程教育部重点实验室,山西 太原,030024
收稿日期:2018-03-29,
修回日期:2018-04-24,
网络出版日期:2018-05-09,
纸质出版日期:2019-01-05
移动端阅览
仝广运, 贾伟, 樊腾等. 类金字塔状GaN微米锥的形貌及发光性能[J]. 发光学报, 2019,40(1): 23-29
TONG Guang-yun, JIA Wei, FAN Teng etc. Morphology and Optical Properties of GaN Micro-pyramid Structure[J]. Chinese Journal of Luminescence, 2019,40(1): 23-29
仝广运, 贾伟, 樊腾等. 类金字塔状GaN微米锥的形貌及发光性能[J]. 发光学报, 2019,40(1): 23-29 DOI: 10.3788/fgxb20194001.0023.
TONG Guang-yun, JIA Wei, FAN Teng etc. Morphology and Optical Properties of GaN Micro-pyramid Structure[J]. Chinese Journal of Luminescence, 2019,40(1): 23-29 DOI: 10.3788/fgxb20194001.0023.
三维结构GaN基LED能够解决二维GaN基薄膜LED中存在的量子限制斯塔克效应、效率骤降、发光波长单一等问题。基于此,本文对三维类金字塔状GaN微米锥的发光性能进行了详细的研究。通过金属有机化合物化学气相沉积原位沉积SiN
x
掩模层后,首先制备了底面尺寸为8 m、高度7.5 m的类金字塔状GaN微米锥,之后在其半极性面外延生长了3个周期的InGaN/GaN多量子阱。通过阴极荧光测试发现,类金字塔状GaN微米锥的半极性面上不同位置发光波长不同;变功率微区光致发光测试表明,类金字塔状GaN微米锥的半极性面在InGaN/GaN多量子阱沉积之后极化场较弱;对InGaN/GaN多量子阱进行了透射电镜表征,结合阴极荧光光谱的结果最终解释了In原子在类金字塔状GaN微米锥上的迁移机理。利用其半极性面不同位置发光波长不同的结构特点及光学特性,可以制备多波长发射LED。
The recently developed 3D GaN-based light emitting diodes (LEDs) can solve problems associated with typical GaN-based thin film LEDs including the quantum-confined Stark effect
efficiency droop
and monochromatic wavelength. To resolve these issues
the micro-pyramids were synthesized and their luminescence properties were subsequently studied. First
GaN micro-pyramids with a base size of 8 m and height of 7.5 m were successfully fabricated after SiN
x
was deposited
in situ
by MOCVD
followed by three deposition periods of InGaN/GaN multiple quantum wells on the semi-polar facet of the GaN micro-pyramids. The cathodoluminescence measurements showed that the wavelength of the emission peaks varied on the semi-polar facet of the GaN micro-pyramids. According to micro-photoluminescence measurements obtained using different excitation power densities
the polarization field on the semi-polar facets of the GaN micro-pyramids containing InGaN/GaN multiple quantum wells was rather weak. The atomic migration mechanism was determined from the cathodoluminescence and transmission electron microscopy results. The GaN micro-pyramids can possibly be used for fabricating LEDs with multi-color emission due to their unique structures and optical properties.
NAMI M,ELLER R F,OKUR S,et al.. Tailoring the morphology and luminescence of GaN/InGaN core-shell nanowires using bottom-up selective-area epitaxy[J]. Nanotechnology, 2017,28(2):025202.
WANG D Q,ZHU T T,OLIVER R A,et al.. Ultra-low-threshold InGaN/GaN quantum dot micro-ring lasers[J]. Opt. Lett., 201843(4):799-802.
BOUZID F,DEHIMI L,PEZZIMENTI F. Performance analysis of a Pt/n-GaN schottky barrier UV detector[J]. J. Electron. Mater., 2017,46(11):6563-6570.
CHO J,PARK J H,KIM J K,et al.. White light-emitting diodes:history,progress,and future[J]. Laser Photon. Rev., 2017,11(2):1600147.
TAKEUCHI T,SOTA S,KATSURAGAWA M,et al.. Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells[J]. Jpn. J. Appl. Phys., 1997,36(2):L382-L385.
PARK S H,CHUANG S L. Piezoelectric effects on electrical and optical properties of wurtzite GaN/AlGaN quantum well lasers[J]. Appl. Phys. Lett., 1998,72(24):3103-3105.
CHOI Y H,RYU G H,RYU H Y. Evaluation of the temperature-dependent internal quantum efficiency and the light-extraction efficiency in a GaN-based blue light-emitting diode by using a rate equation model[J]. J. Korean Phys. Soc., 2016,69(8):1286-1289.
ZHAO H S,CHEN C Y,LEE S W R. Effects of GaN blue LED chip and phosphor on optical performance of white light LED[C]. Proceedinys of The 20122nd IEEE CPMT Symposium Japan,Kyoto,Japan, 2012:1-4.
TIAN P F,MCKENDRY J J D, GU E,et al.. Fabrication,characterization and applications of flexible vertical InGaN micro-light emitting diode arrays[J]. Opt. Express, 2016,24(1):699-707
ZHANG J,TIAN W,WU F,et al.. The effects of substrate nitridation on the growth of nonpolar a-plane GaN on r-plane sapphire by metalorganic chemical vapor deposition[J]. Appl. Surf. Sci., 2014,307:525-532.
LIM S H,KO Y H,RODRIGUEZ C,et al.. Electrically driven,phosphor-free,white light-emitting diodes using gallium nitride-based double concentric truncated pyramid structures[J]. Light Sci. Appl., 2016,5(2):e16030.
FU B,CHENG Y,SI Z,et al.. Phosphor-free InGaN micro-pyramid white light emitting diodes with multilayer graphene electrode[J]. RSC Adv., 2015,5(122):100646-100650.
KO Y H,KIM J H,JIN L H,et al.. Electrically driven quantum dot/wire/well hybrid light-emitting diodes[J]. Adv. Mater, 2011,23(45):5364-5369.
TIAN Z H,LI Y F,SU X L,et al.. Super flexible GaN light emitting diodes using microscale pyramid arrays through laser lift-off and dual transfer[J]. Opt. Express, 2018,26(2):1817-1824.
赵晨,贾伟,樊腾,等. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报, 2017,31(22):21-25. ZHAO C,JIA W,FAN T,et al.. The growth and morphology characterization of GaN micro-pyramid structure[J]. Mater. Rev., 2017,31(22):21-25. (in Chinese)
ZHANG M,CAI D M,ZHANG Y M,et al.. Investigation of the properties and formation process of a peculiar V-pit in HVPE-grown GaN film[J]. Mater. Lett., 2017,198:12-15.
KITAMURA S,HIRAMATSU K,SAWAKI N. Fabrication of GaN hexagonal pyramids on dot-patterned GaN/sapphire substrates via selective metalorganic vapor phase epitaxy[J]. Jpn. J. Appl. Phys., 1995,34(2):L1184-L1186.
LUNDSKOG A,PALISAITIS J,HSU C W,et al.. InGaN quantum dot formation mechanism on hexagonal GaN/InGaN/GaN pyramids[J]. Nanotechnology, 2012,23(30):305708.
KISIN M V,EL-GHOROURY H S. Modeling of Ⅲ-nitride multiple-quantum-well light-emitting structures[J]. IEEE J. Sel. Top. Quantum Electron., 2013,19(5):1901410.
CHICHIBU S,SOTA T,WADA K,et al.. Exciton localization in InGaN quantum well devices[J]. J. Vac. Sci. Technol., 1998,16(4):2204-2214.
WANG T,NAKAGAWA D,WANG J,et al.. Photoluminescence investigation of InGaN/GaN single quantum well and multiple quantum wells[J]. Appl. Phys. Lett., 1998,73(24):3571-3573.
SHCHUKIN V A,LEDENTSOV N N,BIMBERG D. Spontaneous formation of nanostructures on crystal surfaces[J]. Phys. E Low Dimens. Syst. Nanostruct., 2001,9(1):140-148.
ZHOU S,LIU Y,WANG D,et al.. The calculation of InGaN quantum dot formation mechanism on GaN pyramid[J]. Superlattices Microstruct., 2015,84:72-79.
0
浏览量
193
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构