浏览全部资源
扫码关注微信
河北大学化学与环境学院 河北省分析科学技术重点实验室,河北 保定,071002
收稿日期:2018-03-22,
修回日期:2018-07-05,
网络出版日期:2018-07-26,
纸质出版日期:2018-12-05
移动端阅览
马丽花, 刘保生, 边刚等. 同步荧光法探究硝苯地平与胃蛋白酶荧光基团的作用机制[J]. 发光学报, 2018,39(12): 1792-1798
MA Li-hua, LIU Bao-sheng, BIAN Gang etc. Investigation on The Interaction of Nifedipine and Pepsin Fluorescent Groups by Synchronous Fluorescence Spectroscopy[J]. Chinese Journal of Luminescence, 2018,39(12): 1792-1798
马丽花, 刘保生, 边刚等. 同步荧光法探究硝苯地平与胃蛋白酶荧光基团的作用机制[J]. 发光学报, 2018,39(12): 1792-1798 DOI: 10.3788/fgxb20183912.1792.
MA Li-hua, LIU Bao-sheng, BIAN Gang etc. Investigation on The Interaction of Nifedipine and Pepsin Fluorescent Groups by Synchronous Fluorescence Spectroscopy[J]. Chinese Journal of Luminescence, 2018,39(12): 1792-1798 DOI: 10.3788/fgxb20183912.1792.
以同步荧光法研究了298,310,318 K下硝苯地平(NDP)与胃蛋白酶(PEP)的荧光基团酪氨酸残基(P-Tyr)、色氨酸残基(P-Trp)之间的相互作用。表明药物以动态猝灭的方式猝灭P-Tyr、P-Trp的荧光,结合位点数
n
为1,主要作用力是疏水作用。310 K时NDP与PEP氨基酸残基反应的荧光猝灭比率份数P-Trp 53.43%
>
P-Tyr 46.57%,结合位置更靠近P-Trp,NDP与蛋白结合率P-Tyr:69.43%~87.15%,P-Trp:73.64%~90.60%,分别建立了结合模型。且Hill系数
n
H
约为1,该结合与后继配体无协同作用。结合距离
r
都小于7 nm,则NDP与P-Tyr、P-Trp之间都存在非辐射能量转移。
The interactions between fluorophore tyrosine residues(P-Tyr) and tryptophan residues (P-Tyr) of pepsin(PEP) and nifedipine(NDP) at 298
310 and 318 K were studied by synchronous fluorescence spectroscopy. The results showed that the drug quenches the fluorescence of P-Tyr and P-Trp by means of dynamic quenching. The number of binding sites was 1
and the main force was hydrophobicity. The fluorescence quenching ratio of NDP to PEP amino acid residues at 310 K was P-Trp 53.43%
>
P-Tyr 46.57%
meaning the binding site was closer to P-Trp. The binding rates of NDP to protein were P-Tyr:69.43%-87.15% and P-Trp:73.64%-90.60%
established a binding model
respectively. The Hill coefficient
n
H
was about 1
meaning this combination has no synergistic effect with subsequent ligand. The binding distance
r
was less than 7 nm in both cases. Thus
non-radiative energy transfer exists between NDP and P-Tyr as well as between NDP and P-Trp.
BAGHERI H, MADRAKIAN T, AFKHAMI A. Investigation of the interaction between nitrite ion and bovine serum albumin using spectroscopic and molecular docking techniques[J]. J. Chin. Chem. Soc-Taip, 2014, 61(11):1223-1230.
MANJUANTH D M, SHARANAPPA T N, SHRINIVAS D J, et al.. Binding interaction and conformational changes of human serum albumin with ranitidine studied by spectroscopic and time-resolved fluorescence methods[J]. J. Iran. Chem. Soc., 2016, 13(7):1325-1338.
王雪荣, 朱晓静, 刘永明. 同步荧光法研究胺菊酯与牛血清白蛋白的相互作用[J]. 化学研究与应用, 2010, 22(6):763-766. WANG X R, ZHU X J, LIU Y M. Study of the interaction between tetramethrin and bovine serum album by synchronous fluorescence spectroscopy[J]. Chem. Res. Appl., 2010, 22(6):763-766. (in Chinese)
张源, 林哲绚, 韩溟. 同步荧光光谱法研究肿瘤芳香族氨基酸残基含量的变化[J]. 光谱学与光谱分析, 2017, 37(9):2822-2825. ZHANG Y, LIN Z X, HAN M. Study on the change of the content of aromatic amino acid residues in the process in the process of malignant transformation by synchronous fluorescence spectrometry[J]. Spectrosc. Spect. Anal., 2017, 37(9):2822-2825. (in Chinese)
FILGUEIRA G C O, FIGURIRA O A S, CARVALHO D M, et al.. Effect of type 2 diabetes mellitus on the pharmacokinetics and transplacental transfer of nifedipine in hypertensive pregnant women[J]. Brit. J. Clin. Pharmaco., 2017, 83(7):1571-1579.
HE J W, MA X L, WANG Q, et al.. Probing the interaction between acotiamide hydrochloride and pepsin by multispectral methods, electrochemical measurements, and docking studies[J]. Biochem. Mol. Toxicol., 2016, 30(7):350-359.
KUMAR A, RAO M. Biochemical characterization of a low molecular weight aspartic protease inhibitor from thermo-tolerant bacillus licheniformis:kinetic interactions with pepsin[J]. Biochim. Biophys. Acta, 2006, 1760(12):1845-1856.
RAKOTOARIVELO N V, PERIO P, NAJAHI E, et al.. Interaction between antimalarial 2-Aryl-3H-indol-3-one derivatives and human serum albumin[J]. J. Phys. Chem. B, 2014, 118(47):13477-13485.
ZENG H J, YOU J, LIANG H L, et al.. Investigation on the binding interaction between silybin and pepsin by spectral and molecular docking[J]. Int. J. Biol. Macromol., 2014, 67(6):105-111.
MALLAPPA M, MOHAMMED A S, BIJESH P, et al.. Spectroscopic and electrochemical studies on the molecular interaction between copper sulphide nanoparticles and bovine serum albumin[J]. J. Mater. Sci., 2018, 53(1):202-214.
刘建垒, 刑效娟, 周瑞, 等. 牛血清白蛋白与槲皮素及花青素相互作用方式及其纳米颗粒特征的比较[J]. 食品科学, 2017, 38(5):7-13. LIU J L, XING X J, ZHOU R, et al.. Interaction modes and nanoparticle characteristics of bovine serum albumin with quercetin and anthocyanin[J]. Food Sci., 2017, 38(5):7-13. (in Chinese)
KABIR M Z, FEROZ S R, MUKARRAM A K, et al.. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking[J]. J. Biomol. Struct. Dyn., 2016, 34(8):1693-1704.
YANG L J, LV J N, WANG X, et al.. Direct interactions in the recognition between the environmental estrogen bisphenol AF and human serum albumin[J]. J. Mol. Recognit., 2015, 28(8):459-466.
MAKARAKA-BIALOKOZ M. Interactions of hemin with bovine serum albumin and human hemoglobin:a fluorescence quenching study[J]. Spectrochim. Acta A, 2018, 193(1):23-32.
刘保生, 曹世娜, 李志云, 等. 荧光法简单快速预测药物-血浆蛋白结合率[J]. 发光学报, 2013, 34(4):488-493. LIU B S, CAO S N, LI Z Y, et al.. A forecast of the binding rate of drug to plasma protein by fluorescence quenching method[J]. Chin. J. Lumin., 2013, 34(4):488-493. (in Chinese)
JAHANBAN-ESFAHLAN A, PANAHI-AZAR V, SAJEDI S. Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin[J]. Biopolymers, 2015, 103(11):638-645.
LI Y, CHEN C, ZHANG C P, et al.. Probing the binding interaction of AKR with human serum albumin by multiple fluorescence spectroscopy and molecular modeling[J]. J. Biomol. Struct. Dyn., 2017, 35(6):1189-1199.
LIU B S, WANG, J, XUE C L, et al.. Spectroscopic studies on the interaction of synthetic food colorants with bovine serum albumin[J]. Z. Phys. Chem., 2011, 225(4):455-468.
SUN Y, ZHAO Y R, LI G B, et al.. Studies of interaction between ergosta-4,6,8(14),22-tetraen-3-one (ergone) and human serum albumin by molecular spectroscopy and modeling[J]. J. Chin. Chem. Soc-Taip, 2011, 58(5):602-610.
ROY S, NANDI R K, GANAI S, et al.. Binding interaction of phosphorus heterocycles with bovine serum albumin:a biochemical study[J]. J. Pharm. Anal., 2017, 7(1):19-26.
0
浏览量
77
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构