浏览全部资源
扫码关注微信
1. 集美大学 信息工程学院,福建 厦门,361021
2. 华侨大学 信息科学与工程学院, 福建省光传输与变换重点实验室,福建 厦门,361021
收稿日期:2018-05-21,
修回日期:2018-08-24,
网络出版日期:2018-08-30,
纸质出版日期:2018-12-05
移动端阅览
相春平, 袁占生, 刘璟等. 表面等离子激元与F-P共振耦合平衡钙钛矿太阳能电池有源层内载流子产生速率[J]. 发光学报, 2018,39(12): 1749-1756
XIANG Chun-ping, YUAN Zhan-sheng, LIU Jing etc. Surface Plasmon Polaritons and F-P Resonance Coupled Modes Balance The Generation Rate of Charge Carriers of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(12): 1749-1756
相春平, 袁占生, 刘璟等. 表面等离子激元与F-P共振耦合平衡钙钛矿太阳能电池有源层内载流子产生速率[J]. 发光学报, 2018,39(12): 1749-1756 DOI: 10.3788/fgxb20183912.1749.
XIANG Chun-ping, YUAN Zhan-sheng, LIU Jing etc. Surface Plasmon Polaritons and F-P Resonance Coupled Modes Balance The Generation Rate of Charge Carriers of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(12): 1749-1756 DOI: 10.3788/fgxb20183912.1749.
为提高有机-无机杂化钙钛矿太阳能电池(PSCs)光吸收效率、平衡有源层中载流子产生速率,将周期性纳米光栅结构引入到PSCs器件结构中。分析了光栅周期、光栅高度和有源层厚度对表面等离子激元(SPPs)与法布里-珀罗(F-P)共振耦合模式的影响。通过改变光栅周期,实现了SPPs与F-P共振耦合波长范围与钙钛矿材料的弱吸收光谱区域相重合,同时光栅高度的增加可以增大耦合模式的光谱宽度。SPPs与F-P共振耦合模式实现了金属电极与电子传输层(ETL)界面处的局域电场增强。结果表明:场增强效应扩展到有源区,有效提高了PSCs有源层远入射光侧在570~800 nm波长范围内的光吸收,进而提高了有源层远入射光区域的载流子产生速率。当光栅周期为250 nm、光栅高度为50 nm、源层厚度为300 nm时,PSCs在太阳光弱吸收光谱区域内的本征吸收提高了~12%,有源层远入射光侧载流子产生速率提高了~41%。
Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently
methylammonium lead halide perovskites were identified as promising absorbers for solar cells. To improve the absorption of perovskite solar cells(PSCs) and modify the distribution of the generation rate of charge carriers
the one dimensional periodic sinusoidal nano-grating structure is introduced into PSCs. We characterize the coupled modes between surface plasmon polaritons(SPPs) and Fabry-Prot(F-P) resonance
and analyze how they are affected by the period and height of the grating and the thickness of the active layer. The coupled modes enhance the light field in the weak absorbance spectrum region. Meanwhile
the width of coupled spectrum shows strong grating height dependence and will get a broad spectrum enhancement when the grating height is larger than 50 nm. The enhanced localized electric field near the interface of Ag/ETL expands into the active layer with an exponential decay length of~100 nm
results an absorption enhancement near the ETL/active layer interface. We calculate the absorption of the active layer by using a finite-difference time-domain(FDTD) method and the absorbance (the optimized grating structure with the grating period
the grating height and the thickness of active layer is 250 nm
50 nm and 300 nm
respectively) is improved by 12% in wavelength range of 650-800 nm in transverse magnetic (TM) light incidence condition. We also demonstrate an increased generation rate of charge carriers near the ETL/active layer interface due to the enhanced field. The normalized generation rate increases by 41%(110%) in the position of 250 nm(200 nm) away from the HTL/active layer interface in PSCs. A balanced generation rate in the whole active layer will improve the diffusion of electrons and the collection of carriers
result in the increasement of the power conversion efficiency.
SHEIKH M S, SAKHYA A P, SADHUKHAN P, et al.. Dielectric relaxation and Ac conductivity of perovskites CH3NH3PbX3(X=Br,I)[J]. Ferroelectrics, 2017, 514(1):146-157.
HE Z C, ZHONG C M, SU S J, et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012, 6:593-597.
MALINKIEWICZ O, YELLA A, LEE Y H, et al.. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photon., 2013, 8:128-132.
CUI J, CHEN C, HAN J, et al.. Surface plasmon resonance effect in inverted perovskite solar cells[J]. Adv. Sci., 2016, 3(3):1500312.
ZHOU H, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546.
SHERKAR T S, MOMBLONA C, ESCRIG L G, et al.. Improving perovskite solar cells:insights from a validated device model[J]. Adv. Energy Mater., 2017, 7(13):1602432.
LIN Q Q, ARMIN A, NAGIRI R C R, et al.. Electro-optics of perovskite solar cells[J]. Nat. Photon., 2014, 9:106-112.
ZHAO D W, SEXTON M, PARK H Y, et al.. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer[J]. Adv. Energy Mater., 2015, 5(6):1401855.
GRTZEL M. The light and shade of perovskite solar cells[J]. Nat. Mater., 2014, 13:838-842.
XING G, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nat. Mater., 2014, 13:476-480.
JUNG H S, PARK N G. Perovskite solar cells:from materials to devices[J]. Small, 2014, 11(1):10-25.
袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展[J]. 物理学报, 2015, 64(3):38405. YUAN H L, LI J P, WANG M K. Recent progress in research on solid organic-inorganic hybrid solar cells[J]. Acta Phys. Sinica, 2015, 64(3):38405. (in Chinese)
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
MOMBLONA C, MALINKIEWICZ O, CARMONA C, et al.. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm[J]. APL Mater., 2014, 2(8):3623-3630.
FANG Z Y, ZHU X. Plasmonics in nanostructures[J]. Adv. Mater., 2013, 25(28):3840-3856.
LONG M, ZEFENG C, ZHANG T, et al.. Ultrathin efficient perovskite solar cell employing periodic structure of composite hole conductor for elevated plasmonic light harvesting and hole collection[J]. Nanoscale, 2015, 8(12):6290-6299.
JIN Y, ZOU D H, WANG K, et al.. Optimization of period and thickness of the corrugated Ag cathode for efficient cross coupling between SPP and microcavity modes in top-emitting OLEDs[J]. Opt. Mater. Express, 2017, 7(6):2096-2101.
JIN Y, FENG J, ZHANG X, et al.. Organic light-emitting diodes:solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Adv. Mater., 2012, 24(9):1187-1191.
HOPPE H S. SARICIFTCI N, MEISSNER D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells[J]. Mol. Cryst. Liq. Cryst., 2002, 385(1):113-119.
HOLZER W, PENZKOFER A, HRHOLD H H, et al.. Photo-physical and lasing characterization of an aromatic diamine-xylylene copolymer[J]. Opt. Mater., 2000, 15(3):225-235.
JIANG Y J, GREEN M A, SHENG R, et al.. Room temperature optical properties of organic-inorganic lead halide perovskites[J]. Solar Energy Mater. Solar Cells, 2015, 137:253-257.
ARMIN A, VELUSAMY M, WOLFER P, et al.. Quantum efficiency of organic solar cells:electro-optical cavity considerations[J]. ACS Photon., 2014, 1(3):173-181.
CHRIST A, TIKHODEEV S G, GIPPIUS N A, et al.. Waveguide-plasmon polaritons:strong coupling of photonic and electronic resonances in a metallic photonic crystal slab[J]. Phys. Rev. Lett., 2003, 91(18):183901.
金玉, 王康, 邹道华, 等. 表面等离子体-微腔激元对顶入射有机薄膜太阳能电池光吸收效率的增强[J]. 发光学报, 2017, 38(11):1532-1538. JIN Y, WANG K, ZOU D H, et al.. Plasmon-cavity polaritons enhance the absorption efficiency of top-incident organic thin-film solar cells[J]. Chin. J. Lumin., 2017, 38(11):1532-1538. (in Chinese)
SCHAU P, FRENNER K, FU L, et al.. Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications[J]. Opt. Express, 2011, 19(4):3627-3636.
FU L, WEISS T, SCHWEIZER H, et al.. Mode coupling and interaction in a plasmonic microcavity with resonant mirrors[J]. Phys. Rev. B, 2011, 84(10):1103.
FENG S, LIU H, KLAR P. Waveguide Fabry-Prot microcavity arrays[J]. Appl. Phys. Lett., 2011, 99(10):53119.
TOMA M, TOMA K, ADAM P, et al.. Surface plasmon-coupled emission on plasmonic Bragg gratings[J]. Opt. Express, 2012, 20(13):14042-14053.
FENG S, ZHANG X, SONG J, et al.. Theoretical analysis on the tuning dynamics of the waveguide-grating structures[J]. Opt. Express, 2009, 17(2):426-436.
SHARON A, ROSENBLATT D, FRIESEM A A. Resonant grating-waveguide structures for visible and near-infrared radiation[J]. J. Opt. Soc. Am. A, 1997, 14(11):2985-2993.
HAYASHI S, NESTERENKO D, RAHMOUNI A, et al.. Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes[J]. Appl. Phys. Lett., 2016, 108(5):51101.
0
浏览量
93
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构